Восстановление теломер вернуло клеткам молодость. Теломеры стабилизируют хромосомы. Роль теломера и теломеразы в регуляции опухолевого роста

Нашла самое главное, что я искала в тему теломер.
Напомним, что есть теломеры.

В результате исследований удалось доказать благотворное влияние на длину теломер следующих питательных веществ:

Витамин B12 Цинк Витамин D

Oмега-3 Витамин К Витамина E

Ниже будет представлен их анализ, а также даны несколько добавочных рекомендаций, относящихся к потреблению продуктов с высоким содержанием указанных веществ, способствующих удлинению теломер.
Естественно, что эффект от употребления представленных ниже продуктов, в силу особенностей каждого отдельно взятого человеческого организма, не может быть абсолютным для 100% населения. Однако в изложенном перечне представлены продукты, благотворный эффект которых на человеческий организм достаточно изучен и научно доказан.
В презентуемом ниже списке собраны 12 лучших питательных веществ, замедляющих процесс старения, в дополнение к которым приведены 2 основные стратегии, не предполагающие дополнительного потребления биодобавок и мультивитаминных комплексов. Все они способны радикально повлиять на жизнь каждого человека и защитить теломеры.

Перечень 12-ти питательных веществ изложен в порядке уменьшения важности оных.

Лично я ежедневно потребляю продукты из первых 6 пунктов плюс дополнительно повышаю содержание витамина D посредством принятия солнечных ванн.

Витамин D
В исследовании с участием более чем 2,000 представительниц слабого пола было установлено следующее: ДНК женщин с большим уровнем витамина D оказались менее подвержены старению. Также была доказана прямая зависимость длины теломер от концентрации в организме витамина D. Кроме того, исследователи не преминули отметить то обстоятельство, что женщины с большей концентрацией витамина D оказались более уравновешенными и менее раздражительными. Всё это, по мнению учёных, указывает на то, что люди с большим уровнем витамина D стареют медленнее по сравнению с людьми, «обделёнными» данным элементом.Длина теломер лейкоцитов (англ. LTL) - это лучший предсказатель болезней, ускоряющих наступление старости. Дело в том, что по мере старения организма LTL становится всё более короткой, а при хронических воспалениях уменьшение длины теломер происходит ещё быстрее. Причина этого кроется в ответе организма на воспалительные процессы путём увеличения объёма лейкоцитов. Уровень витамина D с возрастом также уменьшается, в то время как концентрация C-реактивного белка (C-reactive protein, сокр. CRP) при воспалении возрастает. Этот «двойной удар» увеличивает общий риск развития таких аутоиммунных заболеваний как рассеянный склероз, ревматоидный артрит и др.Витамин D, со своей стороны, является мощным ингибитором, замедляющим воспалительные процессы. Результатом этого является уменьшение объёма лейкоцитов и формирование положительной реакции в цепи, защищающей организм от множества болезней, и, как следствие, - от преждевременного старения.Учёные установили, что субпопуляции лейкоцитов (англ. lymphocyte subsets) располагают рецепторами для активной формы витамина D (D3), позволяющими витамину напрямую воздействовать на эти клетки. В частности, дефекты рецепторов витамина D способствуют развитию рахита и других аутоимунных болезней, тогда как физиологическая обеспеченность организма витамином D увеличивает противораковый иммунитет (посредством уменьшения выживаемости раковых клеток). Данный эффект «привязан» к иммуномодулирующей активности рецептора витамина D и его производных (агонистов). Эти данные фундаментальных исследований в области клеточной биологии подтверждены доказательной медициной.
Солнечные ванны являются самым благоприятным способом оптимизации уровня витамина D в организме. Я в полной мере осознаю, что у многих современных людей отсутствует возможность регулярно загорать, но с моей стороны было бы непростительной небрежностью не акцентировать внимание на том, что получение витамина D от солнца в разы предпочтительнее насыщения организма витамином D путём приёма различных пищевых добавок.
Астаксантин (производная микроводорослей Pluvialis Haematoccous)
В исследовании об использовании мультивитаминов, проведённом в 2009 году, была выявлена взаимосвязь между длиной теломер и использованием антиоксидантных формул. Согласно авторам, теломеры особенно уязвимы перед окислительным (оксидативным) стрессом (англ. oxidative stress). Кроме того, наличие в организме воспалительных процессов существенно увеличивает степень повреждения клеток под воздействием оксидативного стресса и приводит к уменьшению активности теломеразы - фермента, ответственного за поддержание длины теломер.Астаксантин - один из самых мощных антиоксидантов с сильными противовоспалительными свойствами и способностями к защите ДНК. Исследование доказало, что это вещество обеспечивает надёжную защиту ДНК даже от радиации, вызываемой смертоносным гамма-излучением. Антаксантин обладает рядом уникальных характеристик, отсутствующих у прочих антиоксидантов.В частности, астаксантин мощнее всех известных антиоксидантов-каротиноидов по части уничтожения свободных радикалов: он в 65 раз мощнее витамина C, в 54 раза эффективнее бета-каротина и в 14 раз сильнее витамина E VI. Кроме того, эффективность астаксантина в «тушении» синглетного кислорода (англ. singlet oxygen) в 550 раз превышает возможности витамина Е и в 11 раз - эффективность бета-каротина в нейтрализации данной разновидности окисления.Астаксантин способен преодолевать гемато-энцефалический (между кровеносной и центральной нервной системами) и гемато-ретинальный (сетчатки) барьеры, благодаря чему обеспечивается противовоспалительная и антиоксидантная защита глаз, мозга и центральной нервной системы.
Еще одной особенностью, отличающей астаксантин от других каротиноидов, является его неспособность функционировать в качестве про-окислителя (рro-oxidant). Другие антиоксиданты в случае повышенной концентрации в тканях могут выступать в качестве про-окислителей (т.е вызывать ещё большее окисление). Именно по этой причине не рекомендуется употреблять слишком много антиоксидантов (вроде бета-каротина). Астаксантин, со своей стороны, даже при значительной концентрации в организме, не способен выступать в качестве про-оксиданта, что делает его чрезвычайно полезным.
И, наконец, едва ли не главным его свойством является уникальная способность защищать клетку целиком (в отличие от других антиоксидантов, обеспечивающих защиту лишь отдельных частей клетки). Эта особенность проистекает из физических характеристик астаксантина, позволяющих ему находиться внутри клеточной мембраны, защищая также внутреннюю часть клетки.
Убихинон (CoQ10)
Коензима Q10 (CoQ10) - пятая по популярности биодобавка в Соединенных Штатах, которую предпочитают 53% американцев (данные опроса 2010 г., проведённого ConsumerLab.com). Согласно статистическим данным, каждый четвёртый американец старше 45 лет принимает статины (англ. statins или HMG-CoA reductase inhibitors) - лекарства, тормозящие в печени биосинтез холестерина, в дополнение к которым необходимо принимать эту коэнзиму.CoQ10 используется каждой клеткой человеческого тела, именно поэтому название данного элемента («ubiquinone») переводится как «присутствующий везде» или «вездесущный» (англ. omnipresent).Для того, чтобы питательные вещества для производства клеточной энергии и уменьшения основных признаков старения приносили должный эффект, человеческий организм должен преобразовать убихинон в редуцированную форму, которая называется убихинол (ubiquinol).Человеческий организм до 25-летнего возраста способен превращать окисленную форму CoQ10 в редуцированную, однако с возрастом эта способность постепенно уменьшается. Преждевременное старение является главным побочным эффектом, демонстрирующим уменьшение количества CoQ10 - витамина, перерабатывающего антиоксиданты подобно витаминам C и E. Кроме того, недостаток CoQ10 наносит значительный ущерб ДНК. В свете того, что коэнзима Q10 оказывает благотворный эффект на здоровье сердца и мускульные функции, её истощение приводит к быстрой утомляемости, мускульной слабости, болям и сердечной недостаточности.
Д-р Стефан Синатра (Stephen Sinatra) в одном из интервью рассказывал об эксперименте, проведённом в середине 1990-х годов на крысах преклонного возраста (в среднем эти грызуны живут 2 года). Животные, получавшие CoQ10 в конце жизни, были более энергичными и отличались повышенным аппетитом по сравнению со своими сородичами, лишёнными CoQ10. Исходя из результатов данного эксперимента, учёные пришли к выводу, что эта коэнзима обладает мощным эффектом анти-старения в том смысле, что позволяет поддерживать молодость до конца жизни. Однако в контексте увеличения продолжительности жизни эффект от приёма CoQ10 является незначительным.
Др. Синатра позднее провёл собственное исследование, по результатам которого констатировал приток энергии и сил как у молодых, так и у старых мышей, в пищу которых добавляли CoQ10. Самые старые мыши проходили через лабиринты быстрее, отличались лучшей памятью и большей двигательной активностью по сравнению со своими ровесниками, не получавшими CoQ10.
Всё это может свидетельствовать в пользу того, что коэнзима Q10 существенно улучшает качество жизни и минимально увеличивает её продолжительность.
Кисломолочные продукты / пробиотики
Общеизвестно, что потребление в пищу значительного количества обработанных химикатами продуктов питания отрицательно сказывается на продолжительности жизни. Несмотря на это, 90% денег, потраченных американцами на еду, приходятся именно на эти продукты. Все они - от замороженной еды до приправ и аперитивов - содержат кукурузный сироп с высоким содержанием фруктозы, являющийся главным источником калорий в США. Учёным удалось доказать прямое влияние обработанных продуктов на появление у будущих поколений значительных генетических изменений (вплоть до серьёзных мутаций), однако даже этот факт не останавливает американцев.Основная проблема состоит в том, что «перегруженные» химией и искусственными подсластителями продукты активно разрушают кишечную микрофлору, ответственную за защиту иммунной системы. Антибиотики, стресс, вода с содержанием хлора, искусственные подсластители и прочие негативные факторы приводят к уменьшению количества пробиотиков (полезных бактерий) в кишечнике, что способствует преждевременному старению и возникновению болезней.Источниками пробиотиков могут служить как ферментированные продукты, так и биодобавки. Первый вариант является более предпочтительным, поскольку ферментированная пища (особенно овощи) содержит значительно больше (вплоть до 100 раз) полезных бактерий.
Масло криля
По мнению д-ра Ричарда Харриса (Richard Harris), люди, у которых показатель жирных кислот омега-3 составляет менее 4%, стареют значительно быстрее тех, у кого указанный показатель превышает 8 процентов. Следовательно, количество omega-3 также влияет на процесс старения.Исследования д-ра Харриса (главного специалиста США по части omega-3) показали, что данные жиры непосредственно влияют на активизацию теломеразы, которая, повторим, способна предотвращать укорачивание теломер.Хотя исследование, о котором идёт речь, является предварительным, я позволю себе предположить, что увеличение жирных кислот омега-3 до более чем 8-процентного уровня является прекрасной стратегией для замедления процесса старения (измерением уровня жирных кислот омега-3 в США занимается Лаборатория диагностики здоровья (Health Diagnostic Laboratory) в г. Ричмонд, штат Вирджиния.Главным источником жирных кислот омега-3 является масло криля, обладающее серией значительных преимуществ перед другими источниками омега-3 (такими как жир холодноводных морских рыб). Кроме того, добавки на основе рыбьего жира несут в себе высокий риск окисления (прогоркания) жира. Д-р. Руди Моерк (Rudi Moerck) указывал на этот нюанс в одном из интервью.
Масло криля также содержит астаксантин натурального происхождения, благодаря чему оно почти в 200 раз устойчивее к окислению, нежели рыбий жир.
В соответствии с исследованием д-ра Харриса, содержание омега-3 в грамме масла криля на 25-50% превышает аналогичный показатель в рыбьем жире. И, наконец, масло криля значительно быстрее абсорбируется организмом.
Витамин K
Витамин K является почти таким же важным, как и витамин D, гласят результаты последних исследований. Несмотря на то, что большинство людей получает достаточное количество витамина K из повседневного рациона, этого недостаточно для поддержания адекватного уровня свертываемости крови и защиты от возможных проблем со здоровьем.В частности, исследования последних лет доказали способность витамина К2 противодействовать появлению рака простаты - главного ракового заболевания среди мужского населения США. В результате изучения данного витамина также удалось установить его преимущества по части улучшения «сердечного» здоровья.Благотворный эффект витамина К2 был впервые доказан в 2004 году (исследование в Роттердаме). В результате последующих опытов удалось установить, что люди, потребляющие 45 микрограмм (мкг) витамина K2 ежедневно, живут в среднем на 7 лет дольше по сравнению с теми, чья дневная норма К2 не превышает 12 мкг.В ходе ещё одного исследования (Prospect Stud), специалисты наблюдали 16.000 добровольцев в течение 10 лет. В результате учёные обнаружили, что дополнительные 10 мкг витамина K2 в ежедневном рационе снижают риск возникновения сердечно-сосудистых заболеваний на 9 процентов.
Витамин K2 присутствует в кисломолочных продуктах (особенно в сыре) и японской натто - пище, являющейся настоящим кладезем K2.
Магний
По данным исследования, опубликованного в октябрьском номере «Journal of Nutritional» за 2011г., магний также играет одну из ключевых ролей в репликации ДНК и синтезе РНК; «пищевой» магний, со своей стороны, оказал положительное влияние на увеличение длины теломер у женщин.Другие исследования показали, что долгосрочный дефицит этого элемента приводит к укорочению теломер в клетках крыс. Это даёт основание полагать, что отсутствие ионов магния оказывают негативное воздействие на целостность генома. Кроме того, дефицит магния может привести к негативным изменениям в хромосомах и снизить способности организма восстанавливать поврежденные ДНК.Авторы эксперимента пришли к следующему заключению: «гипотеза о том, что … магний влияет на длину теломер, является полностью обоснованной, поскольку магний обеспечивает целостность и исправляет дефекты ДНК, а также способен эффективно противостоять оксидативному стрессу и воспалительным процессам
Полифенолы
Полифенолы - это мощные антиоксиданты, содержащиеся в продуктах питания растительного происхождения, многие из которых способны замедлять процесс старения и противостоять некоторым заболеваниям. Ниже приведён перечень продуктов с самыми сильными антиоксидантными свойствами.

Виноград (Resveratrol).

Две дополнительные стратегии здорового образа жизни, влияющие на длину теломер.

Правильное питание «ответственно» примерно за 80% благ, проистекающих от здорового образа жизни (одной из составных частей которого являются голодание). Остальные 20% приходится на физические упражнения, которые также препятствуют сокращению длины теломер.

Физические упражнения.

Недавнее исследование (PLoS One, май 2010) женщин, страдающих от хронического стресса в период постменопаузы, показало, что «энергичная физическая активность … защищает людей, находящихся в состоянии стресса, оказывая влияние на длину теломер (TL)». Это значит, что у женщин, игнорирующих физические упражнения, повышение уровня стресса на 1 пункт увеличивает вероятность сокращения длины теломер на 15% (изменение уровня стресса проводится по Шкале восприятия стресса PSS-10 (англ. PERCEIVED STRESS SCALE). В то же время стрессовое состояние у физически активных женщин никак не отразилось на длине теломер.Высокая интенсивность физических упражнений оказалась весьма действенным инструментом уменьшения сокращения длины теломер и, как следствие, - замедления процесса старения.

Грета Блэкберн (Greta Blackburn) в своей книге «Возраст бессмертия…» («The Immortality Edge: Realize the Secrets of Your Telomeres for a Longer, Healthier Life») представила подробный отчёт о том, как физические упражнения высокой интенсивности препятствуют сокращению длины теломер.

Периодическое голодание

Предыдущие исследования показали, что возможность продления жизни за счет снижения потребления калорий действительно существует. Проблема состоит в том, что большинство людей не понимает, как правильно нужно голодать (ведь для того, чтобы оставаться здоровым, следует сокращать лишь некоторые виды калорий - углеводы).

Исследование, проведённое профессором Синтией Кенйон (Cynthia Jane Kenyon), доказало, что уменьшение количества углеводов приводит к активизации генов, управляющих молодостью и долголетием.

Одним из самых действенных способов ограничения таких калорий является периодическое голодание (в частности, прекращение потребления сахара и зерновых).

Физиологическое старение – это мультифакториальное явление, которое находится в зависимости от нескольких генетических и внешних факторов. Одним из генетических факторов, влияющих на скорость старения и продолжительность жизни живых организмов, является длина теломер, теломеры находятся на концах линейных хромосом.

Некоторые современные лаборатории заявляют, что могут спрогнозировать биологическое время вашей жизни. Все, что вам нужно сделать, чтобы узнать, сколько вы сможете прожить, это предоставить 5 мл крови и около 500-700 долларов США и подождать в течение 4-5 недель!

Старение и продолжительность жизни были и остаются загадкой для многих исследователей. Процесс старения зависит от нескольких факторов, включая наличие повреждений ДНК по причине оксидативного стресса, факторов окружающей среды, хронологического (паспортного) возраста, факторов риска, таких как несчастные случаи, и т.д. Предполагается, что помимо этого важную роль в процессе старения играют определенные структуры, называемые теломерами.

Теломеры – это особые структуры, которые находятся на концах линейных хромосом. Они защищают хромосомы и обеспечивают структурную стабильность молекулам линейной ДНК. Отмечено, что во время старения длина этих структур уменьшается.

Что такое теломеры?

Располагающиеся на концах линейных хромосом, теломеры представляют собой специфический набор некодирующих, повторяющихся последовательностей ДНК. Они образуют защитный колпачок на хромосомах и выполняют функцию аналогичную пластиковым наконечникам (эглетам) на концах шнурков.

Для поврежденных концов хромосом характерна «липкость» – они могут присоединяться к другим хромосомам, становясь причиной генетических аберраций. Теломерные повторы придают линейным хромосомам стабильность и не позволяют им изнашиваться и прикрепляться друг к другу.

Почти все теломеры имеют на одной нити общую последовательность Cn(A/T)m [где n>1, а m= 1-4] ,

тогда как другая нить с одним выступающим концом имеет общую последовательность Gn(T/A)m .

Они присутствуют в большинстве эукариотических клеток, а также в определенных прокариотических организмах с линейными хромосомами. У позвоночных теломеры состоят из множественных повторов последовательности: 5′-TTAGGG-3′.

Теломеры как генетические бомбы замедленного действия

Процесс репликации ДНК эукариот начинается в молекуле ДНК с нескольких участков. Синтез новой ДНК происходит посредством лидирующей нити (которая синтезируется непрерывно) и отстающей нити (характеризующейся прерывистым синтезом ДНК). Чтобы инициировать синтез ДНК, вовлеченному в этот процесс ферменту требуется короткий фрагмент РНК, называемый РНК-праймером. В результате крайняя часть 3′-конца отстающей нити остается нескопированной.

«Представьте фотокопировальный аппарат, который делает прекрасные копии вашего текста, но всегда начинает со второй строки каждой страницы и заканчивает ее предпоследней строкой»

  • Геном: автобиография вида в 23-х главах (Мэтт Ридли)
  • Genome: The Autobiography of a Species in 23 Chapters (by Matt Ridley)

Это явление носит название «концевой недорепликации» и может приводить к потере генетической информации, содержащейся на самом конце молекулы.

Наличие теломер на конце хромосомы предотвращает подобную потерю информации. Во время каждого цикла репликации, происходящего, когда клетка делится, чтобы дать начало двум новым клеткам, часть теломерной последовательности остается нескопированной. Вследствие этого при каждом делении клеток теломеры становятся все короче и короче, этот феномен получил название «укорачивание теломер».

После череды следующих друг за другом делений теломерный участок исчезает полностью, и клетка становится сенесцентной (старой). Таким образом, теломеры служат молекулярными часами или генетической бомбой замедленного действия и не позволяют клеткам быть бессмертными. Впервые это интересное явление ограниченности количества циклов деления, которые может претерпевать клетка, пронаблюдал Леонард Хейфлик в нормальных клетках животных и человека. Он показал, что нормальные клетки плода человека, в культуре, могут делиться всего 40-60 раз, после чего происходит их физиологическое старение. Хейфлик предположил, что именно такое клеточное старение играет важную роль в процессе физического старения.

И хотя укорачивание теломер был связано со старением, точно не известно, является ли оно причиной старения, или служит одним из признаков старения, как например провисание кожи и поседение волос. Тем не менее, исследования обнаружили положительную корреляцию между теломерами и продолжительностью жизни, а также заболеваемостью у людей.

В ходе исследования, проведенного Ричардом Коутоном (Университет штата Юта), испытуемые были разделены на две группы по признаку средней длины их теломер, измеренной с использованием клеток крови. Было установлено, что участники с более длинными теломерами прожили на пять лет дольше, чем участники с более короткими теломерами. Также было отмечено, что среди людей старше 60 лет те, у кого теломеры были короче, оказались в шесть раз более уязвимыми к смерти по причине сердечных заболеваний и имели в восемь раз более высокий риск смертельных инфекций.

Можно ли обратить старение вспять?

Хотя большая часть клеток в нашем организме имеет определенную продолжительность жизни, существует небольшая группа клеток, которые обладают бессмертием. Это возможно благодаря активности рибонуклеопротеидного фермента под названием теломераза, который может формировать и сохранять теломерные повторы на концах хромосом. Этот фермент присутствует во всех молодых клетках, однако в процессе повторяющего снова и снова деления клеток его количество снижается. В случае бессмертных клеток, таких как яйцеклетки и сперматозоиды, а также некоторые иммунные клетки, активность теломеразы остается постоянной.

Итак, можно ли посредством простой активации этого фермента во всех других клетках обращать вспять или останавливать процесс старения? Группа ученых из Гарвардской медицинской школы в Бостоне создала методами генетической инженерии мышей с измененной активностью теломеразы. Этим мышам дали достичь взрослого возраста, после чего в течение месяца поддерживали активность данного фермента. У мышей наблюдалось быстрое старение, однако восстановление активности теломеразы в период зрелости привело к обращению эффектов старения вспять.

Хотя ученые изучали эффект активации теломеразы не у нормальных мышей, а исследовали аномально стареющих мышей, поразительным результатом этого эксперимента стал вывод о том, что признаки старения может обращать вспять. Этот вывод был назван «эффектом Понсе де Леона» в честь исследователя Понсе не Леона, отправившегося на поиски Фонтана молодости. Тем не менее, значимость полученных данных для человека еще не подтверждена.

Постоянная активность теломеразы также наблюдается у чрезвычайно опасных бессмертных клеток – раковых. Укороченные, но стабильные теломеры найдены в нескольких видах раковых клеток. Таким образом, активация теломеразы в целях обращения вспять процесса старения сопровождается значительным риском, который также требует оценки.

Отмечено, что точная длина теломер колеблется у разных людей одного и того же возраста. Ученые утверждают, что измерение длины теломер может позволять предугадывать биологическое время жизни человека. Такие компании, как Life Length (Испания), Telome Health, Inc. (США) и SpectraCell Laboratories, Inc. (США) проводят анализ крови, определяя среднюю длину теломер и прогнозируя таким способом длительность жизни.

Хотя польза прогнозирования продолжительности жизни человека остается под вопросом, подобные тесты пригождаются в определении того, насколько человек здоров, насколько быстро он стареет, и насколько высок у него риск определенных заболеваний и нарушений. Результаты такого анализа могут служить предупреждением, мотивируя человека на ведение здорового образа жизни и применение надежных способов достижения долголетия.

Интернет-магазин www.technodom.kz/ — это качественная техника в Казахстане.

Это продолжение статьи про «Кортизол, окислительный процесс, теломеры и наша молодость», начало .

Продолжаю исследовать тему молодости и ДНК.

А если коротко, то речь идет о теломерах — генах на конце нашей ДНК, от которых зависит, сколько раз клетка может делиться, прежде чем погибнет. Понятно, что нам очень полезно знать про удлинение теломеров.

И именно теломеры, в конечном итоге, являются показателем биологического возраста и повышенного риска подверженности различным заболеваниям и играют важную роль для нашего здоровья.

Последние данные свидетельствуют о том, что укороченный теломер может ингибировать (подавлять, окислять) функцию стволовых клеток, клеточную регенерацию и поддержание органов и участвовать в страшном процессе старения.

Что их укорачивает?

Один из существенных факторов: стресс. Любой. В результате плохой экологии, неблагоприятного окружения и района, домашнего насилия и т.д.

Что удлиняет?

Как ни странно, сама Нобелевский лауреат, которой принадлежит «открытие того, как теломеры и фермент теломераза защищают хромосомы» в результате многочисленных исследований и сотрудничеств с психиатрами, пришла к выводу, что медитация и пребывание в здесь и теперь — ключ к здоровью и долголетию (про долголетие ).

Кроме того, тема тщательно изучается и с других сторон, и сегодня ученые приходят к следующим выводам относительно длины теломеров и основных принципов их здоровья.

Что говорят ученые о том, как же все-таки помогать теломерам оставаться «длинными и здоровыми»:)?

1. Молодость сердца и Омега-3.

Проведенное в 2010 г. исследование пациентов с ишемической болезнью сердца (ИБС) обнаружило обратную связь между уровнями рыбьего жира в крови и скоростью укорочения теломер за 5 лет, предполагая возможное объяснение защитных эффектов жирных кислот Омега-3. Так как теломеры являются маркером биологического старения, смертность среди больных с сердечно-сосудистыми заболеваниями можно предсказать с помощью их длины. Исследователи из Калифорнийского университета, Сан-Франциско, обследовали более 600 пациентов и обнаружили, что чем выше уровень Омега-3 у пациентов с ишемической болезнью сердца, тем длиннее теломеры.

Выбирайте высококачественные добавки рыбьего жира и принимайте по 2-3 капсулы (или 1 чайную ложку) два раза в день во время еды.

2. Ежедневно двигайтесь.

В 2008 г. было проведено исследование среди более 2400 близнецов, во время которого сравнивали длину их теломеров. Те, кто тренировался, были биологически моложе, чем те, кто этого не делал. На самом деле, теломеры наиболее активных субъектов оказались на 200 нуклеотидов длиннее, чем у наименее активных субъектов.

Каждую неделю занимайтесь 30-минутными силовыми тренировками (3 раза), 1-2 интервальными кардиотренировками (не более 30 минут) и йогой.

3. Антиэйдж и астрагал.

Астрагал используется в традиционной китайской медицине и обладает иммуностимулирующими свойствами. Обнаружено, что некоторые молекулы астрагала способствуют росту теломеров. Вещества в его корне (так называемые циклоастрагенол и астрагалозид) могут замедлить процесс старения путем активации производства фермента теломеразы (ответственного за восстановление теломер). Две запатентованные формы экстракта корня астрагала известны как TAT2 и TA-65.

4. Ежедневная доза солнечного света.

Чем выше концентрация витамина D, тем длиннее теломеры. Исследователи сообщают, что влияние на теломеров витамина D, вероятно, связано с ингибирующим эффектом на воспаление.

Помните, что закисляющий стресс и воспаление старят вас быстрее, поэтому нужно принять ежедневную дозу солнечного света, чтобы выглядеть и чувствовать себя лучше.

5. Поверните время вспять с ресвератролом.

Известно, что ресвератрол в красном вине улучшает функцию кровеносных сосудов, уменьшает жировые клетки и даже тормозит процесс старения. Это правда! Исследование 2003 г. показало, что обработанные ресвератролом дрожжи жили на 60% дольше. Злоупотреблять не надо, как советуют французы, один бокал красного вина не повредит.

6. Откажитесь от вредных привычек.

Стресс, сахар и воспаление независимо друг от друга укорачивают длину теломер и ускоряют старение клеток.

Кандидат химических наук Мария Зверева, кандидат химических наук Мария Рубцова (МГУ им. М. В. Ломоносова, химический факультет).

В октябре 2009 года в Стокгольме объявлены имена лауреатов Нобелевской премии по физиологии и медицине. Это американские учёные Элизабет Блэкбёрн (Elizabeth H. Blackburn), Кэрол Грейдер (Carol W. Greider) и Джек Шостак (Jack W. Szostak), удостоившиеся самой престижной научной награды дословно «за открытие того, как теломеры и фермент теломераза защищают хромосомы». Попробуем разобраться, что такое теломеры и теломераза, почему и каким образом они защищают хромосомы?

Элизабет Блэкбёрн.

Кэрол Грейдер.

Джек Шостак.

Теломераза активна не во всех клеточных популяциях. Максимальная активность наблюдается в «вечно молодых» эмбриональных клетках. В стволовых клетках теломераза работает не в полную силу.

Теломеры: фунции и синтез.

ХРОМОСОМЫ НУЖДАЮТСЯ В ЗАЩИТЕ

Генетическая информация хранится в ядрах клеток в виде дезоксирибонуклеиновой кислоты (ДНК), которая плотно упакована в линейные хромосомы. В середине 1970-х годов Джек Шостак в своей лаборатории в Медицинской школе Гарварда провёл эксперимент. Он добавил в дрожжевые клетки фрагменты чужеродных молекул ДНК и обнаружил, что они не могут долго оставаться в клетке в исходном виде и встраиваются в хромосомы. Так выяснилось, что обломки хромосом нестабильны: они постоянно обмениваются участками с другими хромосомами, перестраиваются, в их нуклеотидных цепочках образуются разрывы, в то время как сами хромосомы остаются в неизменном виде. К счастью, клетки обладают функцией репарации - в них имеется система молекулярной «починки» случайных разрывов в хромосомных цепочках.

Всё же оставалось неясным, почему ДНК в составе хромосом стабильна, а обломки без концевых последовательностей подвержены перестройкам. Исследования Пауля Германа Мюллера (лауреат Нобелевской премии по физиологии и медицине 1946 года) и Барбары Мак-Клинток (лауреат Нобелевской премии по физиологии и медицине 1983 года) в начале 1940-х годов показали, что концевые участки защищают хромосомы от перестроек и разрывов. Мюллер назвал эти особые участки теломерами - от двух греческих слов: telos - конец и meros - участок. Но что представляют собой эти участки и какую функцию они выполняют в клетке, учёные тогда ещё не знали.

ТЕЛОМЕРЫ СТАБИЛИЗИРУЮТ ХРОМОСОМЫ

В 1975 году Элизабет Блэкбёрн в лаборатории Джозефа Гала в Йельском университете, изучая внехромосомные молекулы ДНК инфузории, обнаружила, что концевые участки этих молекул содержат тандемные повторяющиеся последовательности, состоящие из шести нуклеотидов: на каждом конце таких повторов было от 20 до 70.

В дальнейших экспериментах Блэкбёрн и Шостак добавили в дрожжи молекулы ДНК с присоединёнными к ним повторами из инфузории и обнаружили, что молекулы ДНК стали стабильнее. В 1982 году в совместной публикации они предположили, что эти повторяющиеся последовательности нуклеотидов и есть теломеры.

Их догадка подтвердилась. Теперь уже точно известно, что теломеры состоят из повторяющихся нуклеотидных участков и набора специальных белков, особым образом организующих эти участки в пространстве. Теломерные повторы - весьма консервативные последовательности, например, повторы всех позвоночных состоят из шести нуклеотидов - TTAGGG, повторы всех насекомых из пяти - TTAGG, повторы большинства растений из семи - TTTAGGG. Благодаря наличию в теломерах устойчивых повторов клеточная система репарации не путает теломерный участок со случайным разрывом. Таким путём обеспечивается стабильность хромосом: конец одной хромосомы не может соединиться с разрывом другой.

ТЕЛОМЕРЫ ПОСТОЯННО УКОРАЧИВАЮТСЯ

Теломерные повторы не просто стабилизируют хромосомы, они выполняют ещё одну важную функцию. Как известно, воспроизведение генетического материала от поколения к поколению происходит за счёт удвоения молекул ДНК с помощью специального фермента (ДНК-полимеразы). Этот процесс называется репликацией. Проблему «концевой репликации» ещё в 1970-х годах независимо сформулировали Алексей Матвеевич Оловников и нобелевский лауреат Джеймс Уотсон. Она заключается в том, что ДНК-полимераза неспособна полностью скопировать концевые участки линейных молекул ДНК, она лишь наращивает уже имеющуюся полинуклеотидную нить.

Откуда же берётся начальный участок? Специальный фермент синтезирует небольшую РНК-«затравку». Её размер (<20 нуклеотидов) невелик по сравнению с размером всей цепи ДНК. Впоследствии РНК-«затравка» удаляется специальным ферментом, а образовавшаяся при этом брешь заделывается ДНК-полимеразой. Удаление крайних РНК-«затравок» приводит к тому, что «дочерние» молекулы ДНК оказываются короче «материнских». То есть теоретически при каждом цикле деления клеток должна происходить потеря генетической информации. Но так происходит далеко не во всех клеточных популяциях. Почему?

ТЕЛОМЕРАЗА НЕ ДАЁТ ТЕЛОМЕРАМ УКОРАЧИВАТЬСЯ

Чтобы клетки не растеряли при делении часть генетического материала, теломерные повторы обладают способностью восстанавливать свою длину. В этом и заключается суть процесса «концевой репликации». Но учёные не сразу поняли, каким образом наращиваются концевые последовательности. Было предложено несколько различных моделей. Российский учёный А. М. Оловников предположил существование специального фермента (теломеразы), наращивающего теломерные повторы и тем самым поддерживающего длину теломер постоянной.

В середине 1980-х годов в лабораторию Блэкбёрн пришла работать Кэрол Грейдер, и именно она обнаружила, что в клеточных экстрактах инфузории происходит присоединение теломерных повторов к синтетической теломероподобной «затравке». Очевидно, в экстракте содержался какой-то белок, способствовавший наращиванию теломер. Так блестяще подтвердилась догадка Оловникова и был открыт фермент теломераза. Кроме того, Грейдер и Блэкбёрн определили, что в состав теломеразы входят белковая молекула, которая, собственно, осуществляет синтез теломер, и молекула РНК, служащая матрицей для их синтеза.

БЕЗ ТЕЛОМЕРАЗЫ КЛЕТКА СТАРЕЕТ, А С ТЕЛОМЕРАЗОЙ - ПЕРЕРОЖДАЕТСЯ

Позднее в лаборатории Шостака обнаружили, что определённые мутации в некоторых генах дрожжей приводят к быстрому укорочению теломер после каждого цикла деления клеток, в результате чего хромосомы становятся нестабильными, а клетки переходят в состояние старения (сенессенса). Теперь мы знаем, что эти гены кодируют теломеразу. Полученные данные подтвердили ещё одну гипотезу А. М. Оловникова о том, что потеря длины теломерных повторов в каждом раунде репликации хромосом зависит от числа делений клетки.

Итак, теломераза решает проблему «концевой репликации»: синтезирует повторы и поддерживает длину теломер. В отсутствие теломеразы с каждым клеточным делением теломеры становятся короче и короче, и в какой-то момент теломерный комплекс разрушается, что служит сигналом к программируемой гибели клетки. То есть длина теломер определяет, какое количество делений клетка может совершить до своей естественной гибели.

На самом деле у разных клеток могут быть разные сроки жизни. В эмбриональных стволовых клеточных линиях теломераза очень активна, поэтому длина теломер поддерживается на постоянном уровне. Вот почему эмбриональные клетки - «вечно молодые» и способны к неограниченному размножению. В обычных стволовых клетках активность теломеразы ниже, поэтому укорачивание теломер скомпенсировано лишь отчасти. В соматических клетках теломераза вовсе не работает, поэтому теломеры укорачиваются с каждым клеточным циклом. Укорочение теломер приводит к достижению предела Хайфлика - к переходу клеток в состояние сенессенса. После этого наступает массовая клеточная смерть. Уцелевшие клетки перерождаются в раковые (как правило, в этом процессе задействована теломераза). Раковые клетки способны к неограниченному делению и поддержанию длины теломер.

Наличие теломеразной активности в тех соматических клетках, где она обычно не проявляется, может быть маркёром злокачественной опухоли и индикатором неблагоприятного прогноза. Так, если активность теломеразы появляется в самом начале лимфогранулематоза, то можно говорить об онкологии. При раке шейки матки теломераза активна уже на первой стадии.

Мутации в генах, кодирующих компоненты теломеразы или других белков, участвующих в поддержании длины теломер, являются причиной наследственной гипопластической анемии (нарушения кроветворения, связанные с истощением костного мозга) и врождённого Х-сцеплённого дискератоза (тяжёлое наследственное заболевание, сопровождающееся умственной отсталостью, глухотой, неправильным развитием слёзных каналов, дистрофией ногтей, различными дефектами кожи, развитием опухолей, нарушениями иммунитета и др.).

ЗАЧЕМ ИЗУЧАТЬ ТЕЛОМЕРЫ И ТЕЛОМЕРАЗУ

Сейчас многие учёные заняты поиском взаимосвязи между активностью теломеразы и старением. Тут необходимо осознать, что длина теломер может контролировать продолжительность жизни клеток, но не всего организма. Старение как биологическое явление - более сложный многофакторный процесс. Гораздо более важна взаимосвязь между активностью теломеразы и риском развития раковых заболеваний. Учёные ищут вещества, влияющие на активность теломеразы и на структуру теломер, с целью создания новых противоопухолевых лекарственных препаратов.

Вот мы и пришли к заключению, что «открытие того, как теломеры и фермент теломераза защищают хромосомы» - это, безусловно, великое достижение современной науки, позволяющее понять, как генетическая информация передаётся от материнской клетки к дочерней без потерь, чем определяется продолжительность жизни клеток, а также некоторые особенности их злокачественного перерождения. Обретённые знания помогут в будущем создать лекарственные препараты, избавляющие людей от неизлечимых болезней. Это действительно выдающееся научное открытие. Но не стоит забывать о выдающихся гипотезах русского учёного А. М. Оловникова, которые подтвердились в работах нынешних нобелевских лауреатов.

Пугач Оксана Александровна

студент 3 курса, кафедра медицинской химии НГМУ,
РФ, г. Новосибирск

Е- mail : oksana - pugach @ rambler . ru

Суменкова Дина Валерьевна

научный руководитель, д-р биол. наук, доцент, кафедра медицинской химии НГМУ,
РФ, г. Новосибирск

Теломераза – это специфическая ДНК полимераза, которая «наращивает» теломерные районы хромосом. Фермент содержит в своем строении белковую часть и молекулу РНК. Известно, что теломеры состоят из 15 тысяч нуклеотидных пар, которые представляют собой повторы двух триплетов ТТА (четыре повтора) и ГГЦ (8 повторов). Теломеры большинства соматических клеток подвергаются укорачиванию при пролиферации клеток вследствие неполной репликации концевых участков (концевой недорепликации). Активность теломеразы проявляется в стволовых клетках, кератиноцитах, клетках сперматогенного эпителия, а в нормальных дифференцированных соматических клетках и клетках тканей её активность отсутствует.

Оказывается, что в клетках большинства опухолей теломераза активна. Так, в клетках доброкачественной опухоли происходит повышение теломеразной активности на 20–30 %, а при злокачественном процессе её активность достигает 70–100 %. Если в нормальных соматических клетках существует генетически обусловленный механизм контроля пролиферации, то раковые же клетки обладают способностью обходить этот механизм. Так как они приобретают свойство иммортальности, которое связано с активацией фермента теломеразы, компенсирующей укорочение теломеров. Следовательно, мы можем сделать вывод, что активация теломеразы может быть важным фактором прогрессирования опухолевых заболеваний. В некоторых опухолях активность теломеразы проявляется почти в 100 % случаев, например мелкоклеточный рак легкого, рак шейки матки, доброкачественные поражения миндалевидной железы. В тоже время имеются опухоли, у которых теломеразная активность не определяется, например лейомиома (доброкачественная опухоль, возникающая в мышечном слои матки – миометрии) .

Экспрессия теломеразы может возникать вследствие какого-либо отбора клонов при критическом уровне укорочении теломер. Сначала клетки начинают быстро делиться, при этом у них начинает укорачиваться длина теломер, затем выживают только те, у которых теломераза остается активной. И в этом случае мы можем говорить о том, что активность теломеразы может быть маркером опухолевой прогрессии и нежелательного прогноза. Таким примером является лимфогранулематоз (злокачественное заболевание лимфоидной ткани), в котором основное увеличение теломеразной активности осуществляется при переходе от первой стадии ко второй .

Другим вариантом механизма появления теломеразной активности являются нарушения метаболизма клеток, происходящие в процессе возникновения опухолевых заболеваний. В таком случае активность теломеразы проявляется в начале заболевания и служит маркером для опухолевого заболевания. Так, при раке шейки матки, теломеразная активность и стадия рака не имеет никакой зависимости, так как активна теломераза уже на первой стадии, а её активация происходит в процессе предопухолевых заболеваний . При гемобластозах (опухолевые заболевания кроветворной и лимфатической ткани) теломераза изначально может быть активна в исследуемом типе клеток, а в дальнейшем её активность будет лишь нарастать при переходе к раку. Так, в случае нарушения регуляции стволовой клетки, обладающей теломеразной активностью, сохраняется большой запас пролиферативного потенциала, достаточного для приобретения различных злокачественных признаков. При этом теломеразная активность проявляется лишь вначале роста опухоли. Метод детекции активности фермента не позволяет обнаружить её на уровне одной клетки, но уже небольшой участок теломераза-положительных клеток будет заметен. Механизмы экспрессии теломеразы, как правило, изучают на клеточных линиях, поэтому сложно сказать какой из них и с какой частотой встречается в исследуемом типе опухолевых заболеваний .

Определение активности теломеразы используют для диагностики опухолевых заболеваний и для создания потенциальных противоопухолевых средств – ингибиторов теломеразы. Измерение теломеразной активности и её интерпретация затрудняется тем, что многие нормальные клетки крови и костного мозга обладают теломеразной активностью. Уровень активности теломеразы изменяется с возрастом, чем старше человек, тем она меньше. Стоит отметить, что метод измерения теломеразной активности с помощью полимеразной цепной реакции не вполне количественный. Он не дает возможности зафиксировать небольшие различия. Учитывая, что активность теломеразы клеток зависит от их пролиферативного состояния, в случае положительного результата мы не можем сказать – обусловлена она большим количеством клеток с малой активностью фермента или малым количеством клеток с большей активностью теломеразы. Кроме того, есть вероятность появления ложноположительных результатов .

В связи с трудностями измерения теломеразной активности, её определяют в сочетании с измерением длины теломер. Длину теломер измеряют как длину концевых рестрикционных фрагментов, проводят количественную гибридизацию или Саузерн-анализ (выявление определенной последовательности ДНК в материале). В последнее же время стали использовать методики количественной полимеразной цепной реакции в реальном времени или анализ гибридизации клеток. В настоящее время методы детекции активности фермента активно разрабатываются .

Пока не найдены препараты, способные с высокой эффективностью подавлять экспрессию генов теломеразы, но есть подходы, которые используют факт активной работы промоторов теломеразы в опухолевых клетках. До этапа клинических испытаний дошли конструкции в составе онколитического аденовируса, который инъецируется непосредственно в саму опухолевую клетку. Этот вирус содержит гены, увеличивающие чувствительность клеток к предложенной терапии. Так как данные гены регулируются промоторами генов теломеразы то, следовательно, их действие осуществляется только на клетке с работающей теломеразой .

Так как в большинстве опухолевых клеток присутствует теломераза, она может стать хорошим кандидатом на роль антигена, связанного с опухолью. При активности теломеразы в клетке фрагменты теломеразной обратной транскриптазы экспонируются на клеточной поверхности и могут служить мишенью для иммунного ответа. Преимущество данной процедуры заключается в отсутствии периода ожидания, как при других методах подавления теломеразы. Клинические испытания были проведены для опухолей простаты, рака поджелудочной железы и гепатоцеллюлярной карциномы. Данная иммунотерапия показывает усиление иммунного ответа против опухоли. Только неясно, насколько могут пострадать здоровые стволовые клетки, которые также обладают теломеразной активностью .

При использовании методов подавления теломеразной активности имеется ряд проблем: эффект наступает с большой задержкой, так как должно пройти большое количество времени, чтобы в отсутствии теломеразы теломеры укоротились за счет недорепликации. Это время может длиться десятки клеточных циклов. В этом случае ингибирование теломеразы будет давать эффект только при малом количестве клеток. Разрабатывая методы противоопухолевой терапии с использованием ингибиторов теломеразы, необходимо учитывать, что некоторые опухолевые клетки способны переходить в длительно неделящееся состояние и тем самым не подаваться действию большинства химиотерапевтических агентов.

Однако в ряде случаев, если лечение будет содержать традиционные методы, которые действуют немедленно и уничтожают большую часть опухолевых клеток, и антителомеразную терапию, не позволяющую раковым клеткам длительно размножаться, то результат в перспективе будет, несомненно, лучше.

Список литературы:

  1. Глухов А.И., Григорьева Я.Е. Исследование активности теломеразы при разработке неинвазивной диагностики онкопатологий мочевого пузыря // Электронный научно-образовательный вестник «Здоровье и образование в XXI веке». – 2012. – Т. 14, – № 4. – С. 15–16.
  2. Егоров Е.Е., Теломеры, теломераза, канцерогенез и мера здоровья // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. – 2010. – Т. 3, – № 2. – С. 191–194.
  3. Кушлинский Н.Е., Немцова М.В. Молекулярно-биологические характеристики злокачественных новообразований // Вестник РАМН. – 2014. – № 1. – С. 33–35.
  4. Свинарева Л.В. Влияние модифицированных ДНК и РНК олигонуклеотидов, содержащих теломерные повторы, на активность теломеразы и рост опухолевых клеток: Автореф. дис. канд. хим. наук – Москва, 2010. – 9 с.
  5. Скворцов Д.А., Рубцова М.П., Зверева М.Е. Регуляция теломеразы в онкогенезе // Acta Naturae (русскоязычная версия). – 2009. – С. 52–53.


Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...