Главные проводящие пути спинного мозга. Надежда на восстановление и излечение. Спинномозговые нервы и сегменты

Спинной мозг человека является важнейшим органом центральной нервной системы, осуществляющий связь всех органов с ЦНС и проводящий рефлексы. Он покрыт сверху тремя оболочками:

  • твердой , паутинной и мягкой

Между паутинной и мягкой (сосудистой) оболочкой и в центральном его канале находится спинномозговая жидкость (ликвор )

В эпидуральном пространстве (промежуток между твердой мозговой оболочкой и поверхностью позвоночника) — сосуды и жировая ткань

Строение и функции спинного мозга человека

Что представляет из себя спинной мозг по внешнему строению?

Это — длинный шнур в позвоночном канале, в виде тяжа цилиндрической формы, длиной примерно 45 мм, шириной около 1 см, более плоский спереди и сзади, чем по бокам. Он имеет условную верхнюю и нижнюю границы. Верхняя начинается между линией большого затылочного отверстия и первым шейным позвонком: в этом месте спинной мозг соединяется с головным посредством промежуточного продолговатого. Нижняя — на уровне 1 -2 поясничных позвонков, после которых шнур принимает конический вид и далее «вырождается» в тонкую спинномозговую нить (терминальную ) с диаметром около 1 мм, которая тянется до второго позвонка копчикового отдела. Терминальная нить состоит из двух частей — внутренней и наружной:

  • внутренняя — длиной примерно 15 см, состоит из нервной ткани, переплетена поясничными и крестцовыми нервами и находится в мешочке из твердой мозговой оболочки
  • наружная — около 8 см, начинается ниже 2-го позвонка крестцового отдела и тянется в виде соединения твердой, паутинной и мягкой оболочек до 2-го копчикового позвонка и сращивается с надкостницей

Наружная, свисающая до самого копчика терминальная нить с переплетающими ее нервными волокнами очень напоминает по виду конский хвост. Поэтому боли и явления, возникающие при защемлении нервов ниже 2-го крестцового позвонка, часто называют синдромом конского хвоста .

Спинной мозг имеет утолщения в шейном и пояснично-крестцовом отделах. Это находит свое объяснение в наличии большого количества выходящих нервов в этих местах, идущих к верхним, а также к нижним конечностям:

  1. Шейное утолщение распространено на протяженности от 3-го — 4-го шейного позвонков до 2-го грудного, достигая максимума в 5-м — 6-м
  2. Пояснично-крестцовое — от уровня 9-го — 10-го грудного позвонков до 1-го поясничного с максимумом в 12-м грудном

Серое и белое вещество спинного мозга

Если рассмотреть строение спинного мозга в поперечном разрезе, то в центре его можно увидеть серый участок в виде раскрывшей свои крылья бабочки. Это — серое вещество спинного мозга. Оно окружено снаружи белым веществом. Клеточное строение серого и белого вещества отличается между собой, как и их функции.


Серое вещество спинного мозга состоит из двигательных и вставочных нейронов :

  • двигательные нейроны передают двигательные рефлексы
  • вставочные — обеспечивают связь между самими нейронами

Белое вещество состоит из так называемых аксонов — нервных отростков, из которых создаются волокна нисходящих и восходящих проводящих путей.

Крылья «бабочки» более узкие образуют передние рога серого вещества, более широкие — задние . В передних рогах находятся двигательные нейроны , в задних — вставочные . Между симметричными боковыми частями имеется поперечная перемычка из мозговой ткани, в центре которой проходит канал, сообщающийся верхней частью с желудочком мозга и заполненный спинномозговой жидкостью. В некоторых отделах или даже по всей протяженности у взрослых людей центральный канал может зарастать.

Относительно этого канала, слева и справа от него, серое вещество спинного мозга выглядит как столбы симметричной формы, соединенные между собой передними и задними спайками:

  • передние и задние столбы соответствуют передним и задним рогам на поперечном срезе
  • боковые выступы образуют боковой столб

Боковые выступы есть не на всей протяженности, а только между 8-м шейным и 2-м поясничным сегментами. Поэтому поперечный срез в сегментах, где отсутствуют боковые выступы, имеет овальную либо круглую форму.

Соединение симметричных столбов в передней и задней частях образует на поверхности мозга две борозды: переднюю, более глубокую, и заднюю. Передняя щель заканчивается перегородкой, примыкающей к задней границе серого вещества.

Спинномозговые нервы и сегменты

Слева и вправо от этих центральных борозд расположены соответственно переднелатеральные и заднелатеральные борозды, через которые выходят передние и задние нити (аксоны ), образующие нервные корешки. Передний корешок по своему строению представляет из себя двигательные нейроны переднего рога. Задний, отвечающий за чувствительность, состоит из вставочных нейронов заднего рога. Сразу на выходе из мозгового сегмента и передний и задний корешок объединяются в один нерв или нервный узел (ганглий ). Так как всего в каждом сегменте имеется два передних и два задних корешках, в сумме они образуют два спинномозговых нерва (по одному с каждой стороны). Теперь нетрудно подсчитать, сколько всего нервов имеет спинной мозг человека.

Для этого рассмотрим его сегментарное строение. Всего имеется 31 сегмент:

  • 8 — в шейном отделе
  • 12 — в грудном
  • 5 — поясничном
  • 5 — в крестцовом
  • 1 — в копчиковом

Значит спинной мозг имеет всего 62 нерва — по 31 с каждой стороны.

Отделы и сегменты спинного мозга и позвоночника находятся не на одном уровне, из-за разницы в длине (спинной мозг короче позвоночника). Это надо учитывать при сопоставлении мозгового сегмента и номера позвонка при проведении рентгенологии и томографии: если в начале шейного отдела этот уровень соответствует номеру позвонка, а в нижней его части лежит на позвонок выше, то в крестцовом и копчиковом отделе эта разница составляет уже несколько позвонков.

Две важных функции спинного мозга

Спинной мозг выполняет две важные функциирефлекторную и проводниковую . Каждый его сегмент связан с конкретными органами, обеспечивая их функциональность. Например:

  • Шейный и грудной отдел — связывается с головой, руками, органами грудной клетки, мышцы груди
  • Поясничный отдел — органы ЖКТ, почки, мышечная система туловища
  • Крестцовый отдел — органы таза, ноги

Рефлекторные функции — это простые, заложенные природой рефлексы. Например:

  • болевая реакция — отдернуть руку, если больно.
  • коленный рефлекс

Рефлексы могут осуществляться без участия головного мозга

Это доказывается простыми опытами на животных. Биологи проводили эксперименты с лягушками, проверяя, как они реагируют на боль при отсутствии головы: была отмечена реакция как на слабые, так и на сильные болевые раздражители.

Проводниковые функции спинного мозга заключаются в проведении импульса по восходящему пути в головной мозг, а оттуда — по нисходящему пути в виде обратной команды какому-то органу

Благодаря этой проводниковой связи, осуществляется любое мысленное действие:
встать, пойти, взять, бросить, поднять, побежать, отрезать, нарисовать — и многие другие, которые человек, не замечая, совершает в своей повседневной жизни в быту и на работе.

Такая уникальная связь между центральным мозгом, спинным, всей ЦНС и всеми органами организма и его конечностям, как и прежде остается мечтой робототехники. Ни один, даже самый современный робот пока не способен осуществить и тысячной доли тех всевозможных движений и действий, которые подвластны биоорганизму. Как правило, такие роботы запрограммированы для узко специализированной деятельности и в основном используются на конвейерных автоматических производствах.

Функции серого и белого вещества. Чтобы понять, как осуществляются эти великолепные функции спинного мозга, рассмотрим строение серого и белого вещества мозга на клеточном уровне.

Серое вещество спинного мозга в передних рогах содержат нервные клетки больших размеров, которые называются эфферентными (двигательными) и объединяются в пять ядер:

  • центральное
  • переднелатеральное
  • заднелатеральное
  • переднемедиальное и заднемедиальное

Чувствительные корешки мелких клеток задних рогов представляют собой специфические клеточные отростки из чувствительных узлов спинного мозга. В задних рогах строение серого вещества неоднородно. Большая часть клеток образуют собственные ядра (центральное и грудное). К пограничной зоне белого вещества, расположенного возле задних рогов, примыкают губчатая и студенистая зоны серого вещества, отростки клеток которых, вместе с отростками мелких диффузно рассеянных клеток задних рогов, образуют синапсы (контакты) с нейронами передних рогов и между соседними сегментами. Эти нейриты получили название передних, боковых и задних собственных пучков. Связь их с головным мозгом осуществляется при помощи проводниковых путей белого вещества. По краю рогов эти пучки образуют белую каемку.

Боковые рога серого вещества выполняет следующие важные функции:

  • В промежуточной зоне серого вещества (боковых рогах) находятся симпатические клетки вегетативной нервной системы, именно посредством их осуществляется связь с внутренними органами. Отростки этих клеток соединяются с передними корешками
  • Здесь образуется спиномозжечковый путь:
    На уровне шейных и верхних грудных сегментов находится ретикулярная зона — пучок из большого количества нервов, связанных с зонами активации коры головного мозга и рефлекторной деятельности.


Сегментарная деятельность серого вещества мозга, задних и передних корешков нервов, собственных пучков белого вещества, окаймляющих серое, называется рефлекторной функцией спинного мозга. Сами же рефлексы называются безусловными , по определению академика Павлова.

Проводниковые функции белого вещества осуществляются посредством трех канатиков — наружными его участками, ограниченными бороздами:

  • Передний канатик — участок между передними срединной и латеральной бороздами
  • Задний канатик — между задними срединной и латеральной бороздами
  • Боковой канатик — между переднелатеральной и заднелатеральной бороздами

Аксоны белого вещества образуют три системы проводимости:

  • короткие пучки, называемые ассоциативными волокнами, которые связывают различные сегменты спинного мозга
  • восходящие чувствительные (афферентные ) пучки, направленные к отделам головного мозга
  • нисходящие двигательные (эфферентные ) пучки, направленные из мозга к нейронам серого вещества передних рогов

Восходящие и нисходящие пути проводимости. Рассмотрим для примера некоторые функции путей канатиков белого вещества:

Передние канатики:

  • Передний пирамидный (корково-спинномозговой) путь — передача двигательных импульсов от коры головного мозга к спинномозговому (передним рогам)
  • Спиноталамический передний путь — передача импульсов осязания воздействия на поверхность кожи (тактильная чувствительность)
  • Покрышечно-спинномозговой путь -связывая зрительные центры под корой головного мозга с ядрами передних рогов, создает защитный рефлекс, вызванный звуковыми или зрительными раздражителями
  • Пучок Гельда и Левенталя (преддверно-спинномозговой путь) — волокна белого вещества связывают вестибулярные ядра восьми пар черепно-мозговых нервов с двигательными нейронами передних рогов
  • Продольный задний пучок — связывая верхние сегменты спинного со стволом мозга, координирует работу глазных мышц с шейными и др.

Восходящие пути боковых канатиков проводят импульсы глубокой чувствительности (ощущения своего тела) по корково-спинномозговым, спиноталамическим и покрышечно-спинномозговым путям.

Нисходящие пути боковых канатиков:

  • Латеральный корково-спинномозговой (пирамидный) — передает импульс движения от коры головного мозга к серому веществу передних рогов
  • Красноядерно-спинномозговой путь (находится впереди латерального пирамидного), сбоку к нему прилегают спинномозжечковый задний и спинноталамический боковой пути.
    Красноядерно-спинномозговой путь осуществляет автоматическое управление движениями и мышечным тонусом на подсознательном уровне.


В разных отделах спинного мозга различное соотношение серого и белого мозгового веществ. Это объясняется разным количеством восходящих и нисходящих путей. В нижних спинномозговых сегментах больше серого вещества. По мере продвижения вверх его становится меньше, а белое вещество наоборот прибавляется, так как добавляются новые восходящие пути, и на уровне верхних шейных сегментов и средней части грудного белого — больше всего. Но в области как шейного, так и поясничного утолщений серое вещество преобладает.

Как видите, спинной мозг имеет очень сложное строение. Связь нервных пучков и волокон уязвима, и серьезная травма или болезнь способны нарушить это строение и привести к нарушению проводящих путей, из-за чего ниже точки «обрыва» проводимости может быть полный паралич и потеря чувствительности. Поэтому при малейших опасных признаках спинной мозг надо обследовать и вовремя лечить.

Пункция спинного мозга

Для диагностики инфекционных болезней (энцефалита, менингита и др. болезней) используется пункция спинного мозга (люмбальная пункция) — ведение иглы в спинномозговой канал. Она проводится таким образом:
В субарахноидальное пространство спинного мозга на уровне ниже второго поясничного позвонка вводится игла и осуществляется забор спинномозговой жидкости (ликвора ).
Это процедура безопасна, так как ниже второго позвонка у взрослого человека спинной мозг отсутствует, а следовательно, нет угрозы его повреждения.

Однако она требует особой тщательности, чтобы не занести под оболочку спинного мозга инфекцию или эпителиальные клетки.

Пункция спинного мозга проводится не только для диагностики, но и для лечения, в таких случаях:

  • введение химиотерапевтических лекарств или антибиотиков под оболочку мозга
  • для эпидуральной анестезии при операциях
  • для лечения гидроцефалии и уменьшения внутричерепного давления (удаление избытка ликвора)

Пункция спинного мозга имеет такие противопоказания:

  • стеноз спинного канала
  • смещение (дислокация) мозга
  • обезвоживание (дегидратация)

Заботьтесь об этом важном органе, занимайтесь элементарной профилактикой:

  1. Принимайте антивирусные средства во время эпидемии вирусного менингита
  2. Старайтесь не устраивать пикники в лесопарковой зоне в мае-начале июня (период активности энцефалитного клеща)



Для контроля над работой внутренних органов, двигательных функций, своевременного получения и передачи симпатических и рефлекторных импульсов, используются проводящие пути спинного мозга. Нарушения в передачи импульсов приводит к серьезным сбоям в работе всего организма.

В чём заключается проводящая функция спинного мозга

Под термином «проводящие пути», подразумевается совокупность нервных волокон, обеспечивающих передачу сигналов в различные центры серого вещества. Восходящие и нисходящие пути спинного мозга выполняют основную функцию – передачу импульсов. Принято различать три группы нервных волокон:
  1. Ассоциативные проводящие пути.
  2. Комиссуральные связи.
  3. Проекционные нервные волокна.
Помимо такого разделения, в зависимости от основной функции, принято различать:

Чувствительные и двигательные пути обеспечивают прочную взаимосвязь между спинным и головным мозгом, внутренними органами, мышечной системой и опорно-двигательным аппаратом. Благодаря быстрой передаче импульсов, все движения тела осуществляются согласованным образом, без ощутимых усилий со стороны человека.

Чем образованы проводящие спинномозговые пути

Основные проводящие пути образованы связками клеток - нейронов. Такое строение обеспечивает необходимую скорость передачи импульсов.

Классификация проводящих путей зависит от функциональных особенностей нервных волокон:

  • Восходящие проводящие пути спинного мозга – считывают и передают сигналы: с кожи и слизистых человека, органов жизнеобеспечения. Обеспечивают выполнение функций опорно-двигательного аппарата.
  • Нисходящие проводящие пути спинного мозга – передают импульсы непосредственно рабочим органам тела человека – мышечным тканям, железам и т.д. Соединены непосредственно с корковой частью серого вещества. Передача импульсов происходит через спинномозговую нейронную связь, к внутренним органам.

Спинной мозг имеет двойное направление проводящих путей, что обеспечивает быструю импульсную передачу информации от контролируемых органов. Проводниковая функция спинного мозга осуществляется благодаря наличию эффективной передачи импульсов по нервной ткани.

В медицинской и анатомической практике принято использовать следующие термины:

Где располагаются проводящие пути мозга спины

Все нервные ткани располагаются в сером и белом веществе, соединяют спинномозговые рога и кору полушарий.

Морфофункциональная характеристика нисходящих проводящих путей спинного мозга ограничивает направление импульсов только в одном направлении. Раздражение синапсов осуществляется от пресинаптической к постсинаптической мембране.

Проводниковой функции спинного и головного мозга соответствуют следующие возможности и расположение основных восходящих и снисходящих путей:

  • Ассоциативные проводящие пути – являются «мостиками», соединяющими участки между корой и ядрами серого вещества. Состоят из коротких и длинных волокон. Первые, находятся в пределах одной половины или доли мозговых полушарий.
    Длинные волокна способны передавать сигналы через 2-3 сегмента серого вещества. В спинномозговом веществе нейроны образуют межсегментарные пучки.
  • Комиссуральные волокна – образуют мозолистое тело, соединяющее новообразованные отделы спинного и головного мозга. Расходятся лучистым способом. Расположены в белом веществе мозговой ткани.
  • Проекционные волокна – место расположения проводящих путей в спинном мозге позволяет импульсам максимально быстро достигать коры полушарий. По характеру и функциональным особенностям, проекционные волокна делятся на восходящие (афферентные пути) и нисходящие.
    Первые разделяют на экстерорецептивные (зрение, слух), проприорецептивные (двигательные функции), интерорецептивные (связь с внутренними органами). Рецепторы располагаются между позвоночным столбом и гипоталамусом.
К нисходящим проводящим путям спинного мозга относятся:

Анатомия проводящих путей достаточно сложна для человека, не имеющего медицинского образования. Но нейронная передача импульсов и является тем, что делает организм человека единым целым.

Последствия повреждений проводящих путей

Чтобы понять нейрофизиологию сенсорных и двигательных путей, следует немного познакомиться с анатомией позвоночника. Спинной мозг имеет структуру, во многом напоминающую цилиндр, окруженный мышечной тканью.

Внутри серого вещества проходят проводящие пути, контролирующие работу внутренних органов, а также двигательные функции. Ассоциативные проводящие пути отвечают за болевые и тактильные ощущения. Двигательные – за рефлекторные функции организма.

В результате травмы, пороков развития или заболеваний спинного мозга, проводимость может снизиться или полностью прекратиться. Происходит это по причине отмирания нервных волокон. Для полного нарушения проводимости импульсов спинного мозга характерна парализация, отсутствие чувствительности конечностей. Начинаются сбои в работе внутренних органов, за которые отвечает поврежденная нейронная связь. Так, при поражении нижней части спинного мозга, наблюдается недержание мочи и самопроизвольная дефекация.

Рефлекторная и проводниковая деятельность спинного мозга нарушается сразу после возникновения дегенеративных патологических изменений. Происходит отмирание нервных волокон, тяжело поддающихся восстановлению. Болезнь быстро прогрессирует и наступает грубое нарушение проводимости. По этой причине приступать к медикаментозному лечению необходимо как можно раньше.

Как восстановить проходимость в спинном мозге

Лечение непроводимости в первую очередь связано с необходимостью прекращения отмирания нервных волокон, а также устранению причин, ставших катализатором патологических изменений.

Медикаментозное лечение

Заключается в назначении препаратов, препятствующих отмиранию клеток мозга, а также достаточному кровоснабжения поврежденного участка спинного мозга. При этом учитываются возрастные особенности проводящей функции спинного мозга, а также серьезность травмы или заболевания.

Для дополнительной стимуляции нервных клеток проводится лечение электрическими импульсами, помогающее поддерживать мышечный тонус.

Хирургическое лечение

Операция по восстановлению проводимости спинного мозга затрагивает два основных направления:
  • Устранение катализаторов, ставших причиной парализации работы нейронных связей.
  • Стимуляция спинного мозга с целью восстановления потерянных функций.
Перед назначением операции проводится общее обследование организма и определение локализации дегенеративных процессов. Так как перечень проводящих путей достаточно большой, нейрохирург стремится сузить поиски с помощью дифференциальной диагностики. При тяжелых травмах крайне важно быстро устранить причины компрессии позвоночника.

Народная медицина при нарушении проводимости

Народные средства при нарушении проводимости спинного мозга, если и используются, должны применяться с особой осторожностью, чтобы не привести к ухудшению состояния пациента.

Особой популярностью пользуются:

Полностью восстановить нейронные связи после травмы достаточно сложно. Многое зависит от быстрого обращения в медицинский центр и квалифицированной помощи нейрохирурга. Чем больше времени пройдет от начала дегенеративных изменений, тем меньше шансов на восстановление функциональных возможностей спинного мозга.

Посмотрим на мозг как на биологический банк информации. В нем есть все - как работать нашему сердцу, печени, почкам, легким, какими должны быть наши мышцы, походка, цвет волос, тембр голоса и т. д. Контроль за всеми процессами формирования и функционирования нашего тела мозг осуществляет по системе, очень схожей с системой телефонной связи, - по нервной системе.

Нервная система наиболее уязвима, и природа защитила ее. Центральная ее часть - мозг и спинной мозг - укрыта костной «броней» - черепом и позвоночником - и называется ЦНС (центральной нервной системой).

Познакомимся с кратким описанием нервной системы по работам современной медицины и затем рассмотрим инженерную картину этой части нашего организма.

Итак, современная медицина считает, что нервная система играет важную роль в восприятии человеком внешней среды органами чувств, в развитии организма, речи, памяти. Центр нервной системы - головной и спинной мозг. Структурные элементы мозга - миллионы связанных между собой клеток. Все вместе они образуют генератор электрических импульсов для контроля за всеми процессами жизнеобеспечения. Их функции очень схожи с функциями электронных машин и проводов в сложном электромеханизме. Они принимают импульсы, обрабатывают, передают их, возбуждая к работе тот или иной участок нашего тела.

Головной и спинной мозг - главные процессоры нашего тела. Они собирают импульсы от органов чувств и рецепторов по проводам-нервам, интегрируют, синтезируют, анализируют и затем посылают команды, вызывающие соответствующие реакции в мышцах, железах, системах, органах...

Центральная нервная система соединяется с частями тела проводами периферической нервной системы.

Связь спинномозговых проводов с периферическими проходит через нервные узелки - ганглии. Каждый нерв на выходе из позвонка имеет два корешка - двигательный и чувствительный. Функции у них очень разные. Сразу на входе в ганглию они соединяются в один нерв, но каждый работает но своей программе. Как два провода в электрическом телефонном кабеле.

Центральная нервная система - мозг и спинной мозг - несет главную программу и интеллектуальную направленную нагрузку. Поэтому она хорошо, обильно кровоснабжается, получая кислород и питательные вещества.

ЦНС защищена двумя видами покрытия. Первое покрытие костное: головной мозг находится в черепе, спинной - в позвоночнике. Второе покрытие - три мозговые оболочки из волокнистой ткани, укрывающие головной и спинной мозг. Костное покрытие и три оболочки - это бронирующее покрытие над центральной нервной системой связи. Внутри ЦНС содержит спинномозговую жидкость. Она оказывает амортизирующее действие и защищает жизненно важные ткани мозга.

Поверхность полушарий головного мозга называется корой. Она образована равномерным слоем серого вещества толщиной 3 мм. Слой этот представляется как бы сложенным в складки, благодаря чему поверхность полушарий имеет сложный рисунок. Если выпрямить слой коры головного мозга, то он займет площадь в 30 раз большую, чем в свернутом виде. Среди всех этих складок находятся определенные глубокие борозды, которые делят кору на доли с определенными функциями.

Работая со слушателями, я часто спрашиваю: «За что Вы цените человека?» - и получаю ответ: «За интеллект».

Он проявляется в человеке по-разному: в совершенстве его физического тела, красивых формах его мышечного корсета, гладкой коже, ясном взгляде, передающем внутреннюю наполненность. Да, именно за интеллект мы ценим человека. Мозг является хранилищем удивительной генетической программы, одухотворяющей каждого из нас. Он руководит всеми процессами жизнеобеспечения в организме. Как? По телефону. Вдоль спины у каждого из нас проходит «центральный многожильный кабель» связи. Это спинной мозг. Он включает 31 электрический провод, идущий от затылочной кости до копчика. Вычленим один провод и выясним механизм его работы (рис. 1).

Нерв - живой провод. Внутри провод заполнен электрически чувствительной жидкостью - плазмой. Поперек волокон, в зависимости от назначения провода, расположены «живые магниты» - молекулы-медиаторы, быстро реагирующие на изменение напряжения внутри нервного провода. Положение молекул поперек полотна - нерв в покое. Если оставить в стороне все специфические тонкости нейрологии, то принципиально механизм передачи импульса состоит в следующем.

При возбуждении нерва в точке его раздражения возникает напряжение плазмы, отличное от напряжения в начале нерва. Разность потенциалов в трубочке нерва и создаст поворотный момент для молекул-медиаторов, «магнитов» (например, ацетилхолина). Из положения - «поперек нерва» живые магниты поворачиваются и становятся «вдоль нерва», соприкасаясь торцами друг с другом. Так возникает живая электрическая цепь, способная передавать импульсы со скоростью 120 м/с. Поворот «живых магнитов» индуцирует электромагнитное поле вокруг нерва, так называемое, квантовое тело нерва.

Тридцать один провод ЦНС вдоль спины каждого из нас можно назвать центральным многожильным кабелем связи мозг - тело. Учитывая высокую опасность повреждения этой центральной магистрали связи, Природа защитила ЦНС, забронировав ее костным панцирем. Присмотритесь к позвоночнику. Да ведь это - сборное бронирующее устройство из костных звеньев - 32 позвонка, укрывающие 31 электрический провод-нерв.

Позвоночник служит одновременно и опорой для всех органов и систем. На нем крепятся по вертикали все органы нашего тела. Каждые два позвонка соединены посредством хрящевого диска. Именно поэтому позвоночник гибкий, легко позволяет телу поворачиваться вправо-влево, сгибаться-разгибаться. Тело каждого позвонка расширено книзу. В расширенной части позвонка, в его отростке, находится отверстие, через которое выходят корешки нервов спинного мозга. На выходе из позвонков у их отростков по всей длине позвоночника находятся узелки нервов - ганглии. Они выполняют роль усилителей электрических импульсов, исходящих из мозга или наоборот, понижают мощность импульсов, поступающих в мозг извне. Ганглии работают одновременно как трансформаторы и конденсаторы на линиях связи. Вдоль позвоночника две линии ганглий: предвертебральная - непосредственно у позвоночника и паравертебральная - на расстоянии 1,5-2 см.

Принимая 32 позвонка как бронирующее устройство «многожильного телефонного кабеля ЦНС», рассмотрим 5 отделов позвоночника по привычной схеме: шейный, грудной, поясничный, крестцовый, копчиковый. От каждого позвонка вправо и влево отходят нервные провода, несущие импульсы органам и системам. Допустим, что в грудном отделе 4-й и 5-й позвонки несколько «вышли» из своего программного положения (сколиоз в грудном отделе). Выходящие из них проводники- корешки нервов входят в предвертебральные ганглии - узелки нервов, несколько придавленные сколиозно сдвинутыми позвонками. Надо полагать, что трансформирующая и конденсирующая способность ганглий при этом изменилась. Импульс, принятый от спинного мозга, получает энергетическую ошибку. Он поступает в паравертебральную ганглию уже с «ошибкой интеллекта».

Паравертебральная ганглия не сможет исправить этой ошибки и отправит в сердце искаженный импульс. По этой причине органы будут получать контрольные импульсы иннервации с ошибками и 10, и 20, и 30, и 50 лет и т. д. Энергетические нарушения импульсов количественного характера, полученные, например, сердцем, перерастают со временем в качество его работы, в болезни сердца, приобретенные пороки сердца. А начало тому, казалось бы, невинный сколиоз.

После паравертебральных ганглий система нервных проводов разветвляется, образуя сеть из более семидесяти тысяч проводов, работающих принципиально так же в соответствии с законом магнитной индукции, как и провода нервов в ЦНС.

Более семидесяти тысяч проводов периферической нервной системы создают биоэлектромагнитное поле, квантовое тело, индуцированное системой связи нервных проводов внутри человека. Чем больше радиус этого поля, тем больше количество здоровья. Чем меньше радиус квантового тела человека, электромагнитного поля, созданного системой связи нервных проводов, тем меньше количество здоровья человека.

Из описанного примера изменения импульсов иннервации органов, например, сердца сколиозом позвоночника, становится очевидным, как важно иметь здоровый, выставленный, откорректированный по проводимости нервных импульсов позвоночник.

Для проверки качества передачи нервных импульсов от мозга к телу можно воспользоваться и приборным методом из медицины Фолля. Он практикуется в Школе здоровья уже более 2-х лет.

У здорового человека (с выставленным позвоночником и чистой печенью, с достаточным количеством кремния) в шейном, грудном, поясничном, крестцовом, копчиковом отделах токи в корешках нервов на выходе из ганглий должны иметь силу тока - 80 мкрА, в органах и системах 50 мкрА.

Токи, предупреждающие деградацию 50 мкрА и выше. У больных людей названные параметры здоровья, вытекающие из энергетических возможностей человека, искажены.

У наших слушателей в первые два дня заезда до коррекции позвоночника и кремниевой терапии токи по отделам позвоночника обычно искажены и за счет потерь на сопротивление при сколиозах позвоночника имеют на выходе из позвонков силу тока 18-50 мкрА, в органах, где застои и воспаление - 100 и более мкрА, где недостаточное энергообеспечение - 25-40 мкрА. Токи, препятствующие деградации, падают ниже 50 мкрА, при опухолевых заболеваниях могут иметь силу тока ниже 20 мкрА.

После коррекции позвоночника, очистительной техники, кремниевой терапии, дегельминтизации, токи выравниваются и составляют 80-50 мкрА.

По радиусу квантового тела (идя замера используются методы радиоэстезии) легко определить качество «брони» - позвоночника. Особую роль в создании мощного квантового тела имеет шейный отдел. Он состоит из 7 позвонков, испускающих 14 прямых и 23 провода-корешка, дублирующих более низко расположенные нервные провода, нервы. Всего в шейном отделе 37 нервных проводов. Всего из позвонков выходит 87 нервных проводов. 37 - шейных, которые подчеркивают особую роль шейного отдела в поддержании здоровья.

В наших родильных домах акушеры применяют при родовспоможении так называемый поворот головы «на ручку» при выходе плода из лона матери. Именно этот прием вносит хаос в положение 37 нервов шейного отдела, приводит к вывихам 7 шейных позвонков, состоящих из хрящиков, пребывающих в состоянии «зеленой веточки», гибкой и подвижной. Много болезней может повлечь за собой «поворот на ручку». А ведь акушер, не осведомленный об энергетической сути человеческого организма, вообще-то не виноват. Он не изучал предмет «Человек и основы его здоровья». Он так и не понял, зачем его заставили выучить закон электромагнитной индукции в школе и нужно ли применять его к человеку... Думать и делать иначе акушера могли обязать только знания. Сегодня акушер работает среди невежественных людей. За вывихнутую шею младенца ему подарят цветы, шампанское, конфеты.

А между тем каждый день рождаются дети, совершая свой первый большой труд, - прохождение по родовым ходам матери. Каждый из них, попадая в руки акушера, теряет способность передачи энергии, генерированной мозгом, в тело. Обычное явление - на подвывихах шеи, как на реостате, теряется 88-90 % энергии импульсов, которые должны были контролировать тело и обеспечивать его энергию.

Более всего страдает щитовидная жечеза. Ее роль - диспетчер по распределению энергии, полученной от мозга, среди желез внутренней секреции (их более 20 тысяч). Недополучая энергию, щитовидная железа не даст ее железам, создающим иммунитет. А чтобы восполнить недостачу энергии, она станет увеличиваться в размерах. Тем самым станет мешать работе голосового аппарата, дыхательных путей, пищевода. Зоб - приговор на удаление большей части железы. Но этим не решается проблема снабжения гормонами. Каждый ребенок, пройдя через руки неосведомленного акушера, получает более или менее значительный подвывих шеи и программу на букет болезней: внутричерепное давление, энцефалопатию, отек мозга, опухоли и др. Огромная армия специалистов по болезням - медиков получит работу: диагностировать, описать, пролечить, защитить ученую степень и изучать, изучать, изучать... болезни, причина которых - вывихнутая во время родовспоможения шея.

Особый урон здоровью новорожденного наносит первородный страх. Он возникает, когда только что родившегося ребенка забирают у матери и уносят в детскую комнату. Несложившиеся еще биологическая и электрическая системы новорожденного должны жить в теплом квантовом теле матери, а грудь матери для ребенка - источник энергии для раскрутки собственного генератора-мозга, создания своего квантового тела.

Время адаптации в земных условиях жизни - 7 дней. Именно эти семь дней акушеры определили младенцу жить без матери. От испуга, что теряет источник жизни - мать, ребенок получает сильный стресс. Подкорковая часть мозга как бы съеживается, сжимается. Между корой и подкоркой образуется воздушная прослойка - диэлектрик, «зона социального запрета».

На долгие годы кора головного мозга, всего 3-4 % хранилища информации, станет контролировать жизнь, обеспечивая сон, сновидение и бодрствование человека без перерывов. Подкорка подменить ее не сможет, «зона социального запрета» не даст подкорке включиться в работу. «Кора и подкорка, две части мозга, могут работать только заменяя друг друга» (В. Ф. Войно-Яснецкий).

Первородный стресс особенно тяжело сказывается на здоровье мальчиков. От страха за жизнь у младенцев инстинктивно сжимаются паховые вены. Резко уменьшается отток крови от половой системы, в надлобковой области образуется застой (мягкая на ощупь припухлость). Вдох- яички ушли в отек, выдох- выпали в мошонку. При спазмах паховых вен яички надолго задерживаются в отеках. Развитие же их возможно только в специальной ткани - в мошонке. Яички и вся половая система мальчиков, как лаборатория, где Разум Природы превращается в семя человеческое, будет отставать в развитии из-за нарушенного кровообращения. Вялое развитие половой системы, ранняя импотенция, программа на аденому простаты, а иногда просто хирургическое вмешательство уже в детском возрасте. Гениталии мужчин не интересуют большую науку в нашей стране. Воспроизводство себе подобных, более счастливых, чем их отцы, не изучается. О консультациях у андролога - специалиста по болезням мужских половых органов - редко кто слышал.

Если вы поднимите трубку телефона и не услышите в ней гудка, значит связь не работает. А на пути от головы к телу она едва-едва теплится.., У больных ДЦП - она уже «не гудит». Индуцированное квантовое тело человека обычно имеет радиус от 30 до 80 см.

Выставление позвоночника с проверкой проводимости нервных проводов по всему телу обычно приводит к созданию биополя, квантового тела радиусом 22 метра. Выставление шейного отдела позвоночника равносильно присоединению головы к телу. Если мы, люди, имеем дело с простой телефонной связью в системе, то поступаем весьма просто. Убираем дефекты связи на линии и «прозваниваем» ее, соединяясь через АТС с нужным контрольным абонентом. Нечто подобное должен делать оператор по коррекции позвоночника, т. е. выставить связь по ЦНС (позвоночник), рукам, ногам, пояснице, плечевому поясу и проверить качество связи (метод радиоэстезии и методы медицины Фолля). По прибору Фолля можно получить очень красноречивую картину изменения проводимости в отделах позвоночника после коррекции (Н. Семенова «Преображение»).

22. Мозжечок, его связи со спинным и головным мозгом. Симптомы поражения

Мозжечок также связан особыми проводящими путями с корой мозга и спинным мозгом. Мозжечок выполняет сложную рефлекторную функцию равновесия. По спинно-мозжечковому пути через нижние ножки к мозжечку направляются импульсы, возникающие в связи с изменением в положении суставов, мышц и сухожилий, а также ряд других импульсов из задних столбов спинного мозга.

От зубчатого ядра мозжечка отходят пути в составе верхних ножек мозжечка, которые несут импульсы к красным ядрам среднего мозга. От красных ядер отходит так называемый монаковский пучок, несущий импульсы к спинному мозгу. Таким образом осуществляется сложная система равновесия, где мозжечок играет роль регулирующего органа, который вносит поправки в каждое произвольное движение, осуществляемое определенной группой мышц. Механизм этих поправок заключается в том, что мозжечок, включая в действие группы мышц-антагонистов, одновременно снимает инерцию, которая присуща каждому двигательному акту. В связи с поражением волокон мозжечковых путей возникают расстройства координации движений. При поражении задних столбов нарушается глубокая чувствительность - чувство положения органов движения, локализации, двухмерного пространственного чувства. В связи с этим нарушается и походка, которая становится неуверенной, движения размашистыми, неточными


23. Экстрапирамидная система

Синдром поражения мозжечка

Синдром поражения мозжечка выражается в нарушении равновесия, координации движений и мышечного тонуса.

Нарушения равновесия проявляются статической атаксией. При нарушении статики больной в пазе Ромберга отклоняется в сторону пораженного полушария мозжечка. В тяжелых случаях нарушение статики настолько выражено, что больной не мажет сидеть и стоять даже с широко расставленными ногами. Выявляется также адиадохокинез - нарушенное чередование, противоположных движений. Адиадохокинез обнаруживается при попытке быстро попеременно совершать супинацию и пронацию кисти у больного получаются неловкие, неточные движения.

Синдром поражения паллидарной системы. Симптомокомплекс поражения паллидарной системы носит название паркинсонизма. Основными симптомами паркинсонизма являются нарушение двигательной активности и мышечная гипертония. Движения больного становятся бедными, маловыразительными (олигокинезия) и замедленными (брадикенезия). При паркинсонизме отмечается тремор в пальцах кисти и (иногда) в нижней челюсти. Тремор возникает в покое, отличается ритмичностью, малой амплитудой и малой частотой. Поскольку основными симптомами поражения паллидарной системы являются гипокинезия и мышечная гипертония, этот симптомокомплекс называется также гипокинетически-гипертоническим. Синдром поражения стриарной системы. При поражении стриарного отдела экстрапирамидной системы отмечается гиперкинетически-гипотонический симптомокомплекс. Основными симптомами при этом бывают мышечная гипотония и избыточные непроизвольные движения - гиперкинезы. Последние возникают непроизвольно, исчезают во сне, усиливаются при движениях. При исследовании гиперкинезов обращают внимание на их форму, симметричность, сторону и локализацию проявления (в верхних, или проксимальных, отделах конечностей или в нижних - дистальных). Гиперкинезы имеют различные по форме проявления. Гиперкинезы, как правило, сопровождаются мышечной гипотонией. У детей они наблюдаются часто; возникают вследствие органических поражений стриарного отдела экстрапирамидной системы из-за отсутствия тормозящего влияния стриатума на нижележащие двигательные центры. Однако у детей нередко наблюдаются и функциональные (невротические) гиперкинезы, которые носят характер навязчивых движений. Они возникают после испуга, переутомлений, перенесенных заболеваний, черепно-мозговых травм и травмирующих психику ребенка переживаний.

24. Параличи (парезы) периферического, центрального, истерического характера

Периферический паралич характеризуется следующими основными симптомами: отсутствием рефлексов или их снижением (гипорефлексия, арефлексия), снижением или отсутствием мышечного тонуса (атония или гипотония), атрофией мышц. Кроме того, в парализованных мышцах и пораженных нервах развиваются изменения электровозбудимости, называющиеся реакцией перерождения. При периферическом параличе в атрофированных мышах могут наблюдаться фибриллярные подергивания в виде быстрых сокращений отдельных мышечных волокон или пучков мышечных волокон (фасцикулярные подергивания). Они наблюдаются при хронических прогрессирующих патологических процессах в клетках периферических двигательных нейронов.

Поражение периферического нерва приводит к возникновению периферического паралича иннервируемых данным нервом мышц.

При этом наблюдаются также нарушения чувствительности и вегетативные расстройства в этой же зоне, так как периферический нерв является смешанным - в нем проходят двигательные и чувствительные волокна. Примером периферического паралича конечностей являются параличи, возникающие при полиомиелите - остром инфекционном заболевании нервной системы. При полиомиелите могут развиваться параличи ног, рук, дыхательных мышц. При поражении шейных и грудных сегментов спинного мозга наблюдается периферический паралич диафрагмы и межреберных мышц, приводящий к нарушению дыхания. Поражение верхнего утолщения спинного мозга приводит к периферическому параличу рук, а нижнего (поясничного утолщения) - к параличу ног.

Центральный паралич возникает при поражении центрального, двигательного нейрона в любом его участке (двигательная зона коры больших полушарий, ствол головного мозга, спинной мозг). Перерыв пирамидного пути снимает влияние коры головного мозга на сегментарный рефлекторный аппарат спинного мозга; его собственный аппарат растормаживается. В связи с этим все основные признаки центрального паралича, так или иначе, связаны с усилением возбудимости периферического сегментарного аппарата.

Основными признаками центрального паралича являются мышечная гипертония, гиперрефлексия, расширение зоны вызывания рефлексов, клонусы стоп и коленных чашечек, патологические рефлексы, защитные рефлексы и патологические синкинезии. Поражение пирамидного пути в боковом столбе спинного мозга вызывает центральный паралич мускулатуры ниже уровня поражения. Если поражение локализуется в области верхних шейных сегментов спинного мозга, то развивается центральная гемиплегия, а если в грудном отделе спинного мозга, то центральная плегия ноги. Центральный паралич мышц лиц; отличается от периферического паралича, наблюдаемого при неврите лицевого нерва или при перекрестном синдроме Мийяра - Гублера, тем, что пораженными оказываются только мышцы нижней половины лица. При центральном параличе мышц языка атрофия его не развивается.

Симптомы и пророки развития других органов и систем.Иногда обнаружение патологии при НСГ является случайной находкой. III. Систематика методов В-сканирования головного мозгас позиций детской невропатологии и нейрохирургии В зависимости от используемых датчиков проводят линейное сканнирование или секторальное сканнирование. В зависимости от используемого ультразвукового окна различают...

Ларингоспазм. Боли иррадиируют в ухо, провоцируются приемом пищи и глотанием. Болевая точка определяется на боковой поверхности шеи, несколько выше щитовидного хряща. Оказание помощи. Неотложная помощь аналогична той, которая оказывается больным с невралгией тройничного нерва. Глоссалгии. Клиника. Глоссалгии обусловлены поражением периферических соматических образований полости рта, но главным...

Активности и звукопроизносительной стороны речи. У таких детей тихий, плохо модулированный голос с носовым оттенком. Исследование шейно-тонического рефлекса при детском церебральном параличе с явлениями кривошеи В зависимости от тяжести и распространенности различают сле­дующие формы детских церебральных параличей: спастическую диплегию, спастическую гемиплегию, двойную гемиплегию, ...

У. М., Белова Л. В. «Некоторые вопросы психтерапии в дерматлогии» – «Вестник дерматологии и венерологии» 1982, 11, 62-66. 605.Мирзамухамедов М. А., Сулейманов А. С., Пак С. Т., Шамирзаева М. Х. «Эффективность гипноза и иглорефлексотерапии при некоторых функциональных заболеваниях у детей» – «Медицинский журнал Узбекистана» 1987, 1, 52-54. 606.Мирзоян А. С. «Поэтапная психотерапия сексуальных...

Кандидат медицинских наук Павел Мусиенко, Институт физиологии им. И. П. Павлова РАН (Санкт-Петербург).

Спинной мозг можно «научить» обслуживать двигательные функции, даже когда его связь с головным мозгом нарушена в результате травмы, и более того - заставить формировать новые связи «в обход» травмы. Для этого нужны электрохимические нейропротезы, стимуляция и тренировка.

Посредством введения химических веществ воздействуют на нейрональные рецепторы, вызывая определённые эффекты возбуждения или торможения нейронов спинного мозга ниже уровня повреждения.

При параличе можно электрическим током стимулировать сенсорные волокна спинного мозга и через них - спинальные нейроны (А). Благодаря электрической стимуляции (ЭС) животное с повреждением спинного мозга может ходить (Б).

Двигательные навыки при параличе можно тренировать с помощью специально сконструированной робототехнической системы. Робот при необходимости поддерживает и контролирует перемещения животного по трём направлениям (x, y, z) и вокруг вертикальной оси (φ

Мультисистемная нейрореабилитация (специфическая тренировка + электрохимическая стимуляция) восстанавливает произвольный контроль движений за счёт образования новых межнейронных связей в спинном мозге и в стволе головного мозга.

Для электрической стимуляции нескольких сегментов спинного мозга и многокомпонентной фармакологической стимуляции специфических нейрональных рецепторов на спинальных сетях могут быть созданы специальные нейропротезы - набор электродов и хемотродов.

Травмы спинного мозга редко сопровождаются полным анатомическим перерывом. Оставшиеся неповреждёнными нервные волокна могут способствовать функциональному восстановлению.

Традиционная нейрофизиологическая картина управления движением отводила спинному мозгу функции канала, по которому распространяются нервные импульсы, связывающие головной мозг с телом, и примитивного рефлекторного контроля. Однако данные, накопленные нейрофизиологами в последнее время, заставляют пересмотреть эту скромную роль. Новые технологии исследования позволили обнаружить в спинном мозге многочисленные сети его «собственных» нейронов, специализированных на выполнении сложнейших двигательных задач, таких как координированная ходьба, сохранение равновесия, контроль скорости и направления при движении.

Можно ли использовать эти нейронные системы спинного мозга для восстановления двигательных функций у людей, парализованных в результате спинальной травмы?

При травме спинного мозга пациент утрачивает двигательные функции потому, что нарушается или полностью разрывается связь между головным мозгом и телом: сигнал не проходит, и ниже места повреждения не происходит активации двигательных нейронов. Так, травма шейного отдела спинного мозга может привести к параличу и потере функций рук и ног, так называемой тетраплегии, а травма грудного отдела - к параплегии, обездвиживанию только нижних конечностей: как если бы подразделения некоей армии, сами по себе функциональные и боеспособные, оказались отрезаны от штаба и прекратили получать команды.

Но главное зло спинальной травмы в том, что любые устойчивые связи, соединяющие нейроны в стабильные функциональные сети, деградируют, если их не активировать снова и снова. С этим феноменом хорошо знакомы те, кто давно не катался на велосипеде или не играл на фортепьяно: многие двигательные навыки утрачиваются, если их не используют. Точно так же в отсутствие активирующих сигналов и тренировки начинают со временем распадаться специализированные на движении нейронные сети спинного мозга. Изменения становятся необратимыми: сеть «разучивается» двигаться.

Можно ли это предотвратить? Ответ, который даёт современная нейрофизиология, обнадёживает.

Нейроны взаимодействуют друг с другом последовательно, по цепочке, вырабатывая химические вещества - медиаторы различного типа. При этом в головном мозге сосредоточена бóльшая часть нейронов, использующих в качестве сигнального «языка» довольно хорошо изученные моноаминергические медиаторы: серотонин, норадреналин, допамин.

На нейронных сетях даже повреждённого спинного мозга остаются рецепторы, способные этот сигнал воспринимать. Следовательно, можно попытаться активировать спинальные сети с помощью соответствующих моноаминергических препаратов, вводя их в нервную ткань спинного мозга извне.

Это обстоятельство легло в основу экспериментов по химической стимуляции.

В 2008 году вместе с группой исследователей из Университета Цюриха (Швейцария) мы попытались активировать спинальные нейронные сети, отвечающие за движение, «сажая» на сохранные рецепторы спинальных нейронов вещества, соответствующие моноаминергическим медиаторам. Эти препараты должны были служить источником сигнала, активирующего нейронные сети спинного мозга и предотвращающего их деградацию. Результат эксперимента оказался положительным, более того, были найдены оптимальные сочетания моноаминергических лекарств для улучшения функции ходьбы и баланса. Работа опубликована в 2011 году в журнале «Neuroscience».

Спинной мозг отличает высокая системная нейрональная пластичность: его нейронные сети способны постепенно «запоминать» те задачи, которые им приходится выполнять регулярно. Регулярное воздействие на определённые сенсорные и моторные пути при двигательных тренировках улучшает работу этих нейронных путей и восстанавливает способности к выполнению тренируемых функций.

Но если нейронные сети спинного мозга можно тренировать, то нельзя ли их чему-нибудь «научить» - например, с помощью стимуляции повреждённого спинного мозга и двигательной тренировки добиться такой функциональной перестройки его нейронных сетей, которая бы с бóльшим или меньшим успехом контролировала двигательную активность самостоятельно, в отрыве от «главного штаба» - головного мозга?

Чтобы ответить на этот вопрос, мы попробовали сочетать химическую нейростимуляцию с электрической. Ещё в 2007 году совместные эксперименты российских и американских нейрофизиологов показали, что если на поверхность спинного мозга крысы поместить электроды, то электрическое поле вокруг активного электрода может возбуждать проводящие спинальные структуры. Поскольку в эксперименте использовались очень небольшие токи, в первую очередь активировались наиболее возбудимые ткани вблизи электрода: толстые проводящие волокна задних спинномозговых корешков, передающие сенсорную информацию от рецепторов тканей конечностей к нейронам спинного мозга. Такая электростимуляция позволяла активизировать двигательные функции у спинальных животных.

Комбинирование электростимуляции, химической стимуляции и двигательной тренировки дало прекрасный результат. При полном разрыве связей спинного мозга с головным «спящие» спинальные нейронные сети удавалось превратить в высоко функционально активные. Парализованным животным вводили нейрофармакологические препараты, их спинной мозг стимулировали в двух сегментах, и постоянно проводились тренировки функции ходьбы. В результате через несколько недель животные показывали движения, близкие к нормальным, и могли адаптироваться к изменению скорости и направления передвижения.

В первых экспериментах исследователи тренировали животных, используя беговую дорожку и биомеханическую систему, которая помогала животному держать тело на весу, но не позволяла двигаться вперёд. Недавно, в 2012 году, в журналах «Science» и «Nature Medicine» опубликованы результаты совместных исследований Университета Цюриха и Института физиологии им. И. П. Павлова РАН, в которых мы применили робототехнический подход.

Специальный робот даёт крысе возможность свободно передвигаться, при необходимости поддерживая и контролируя её перемещения по трём направлениям (x, y, z). Причём сила воздействия по различным осям может меняться в зависимости от экспериментальной задачи и собственных двигательных способностей животного. В робототехнической установке использованы мягкие эластичные приводы и спирали, которые устраняют инерционное влияние силовых воздействий на живой объект. Это даёт возможность применять установку в поведенческих опытах. Робот опробован на экспериментальной модели парализованной крысы с повреждениями противоположных половин спинного мозга на уровне разных спинномозговых сегментов. Связь между головным и спинным мозгом была полностью прервана, однако сохранялась возможность прорастания новых нервных волокон между левой и правой частями спинного мозга. (Данная модель имеет сходство с повреждениями спинного мозга у людей, которые чаще всего являются анатомически неполными.) Комбинация тренировки в робототехнической системе с многокомпонентной химической и электрической стимуляцией спинного мозга позволила таким животным ходить вперёд по прямой, переступать через препятствия и даже подниматься по лестнице. У крыс появились новые межнейронные связи в области повреждения спинного мозга и восстановился произвольный контроль движений.

Так родилась идея электрохимических нейропротезов для имплантации в спинной мозг и управления спинальными сетями. Через специальные каналы имплантата можно вводить лекарства, которые действуют на соответствующие рецепторы и имитируют модулирующий нервный сигнал, прерванный после травмы. Матрица электродов стимулирует сенсорные входы разных сегментов и через них активирует отдельные популяции нейронов, чтобы таким образом вызвать определённые движения.

Стандартный клинический подход лечения пациентов с тяжёлыми спинальными травмами направлен на предотвращение дальнейших вторичных повреждений нервной системы, соматических осложнений паралича, на психологическую помощь парализованным больным и обучение их использованию оставшихся функций. Восстановительная терапия утраченных моторных навыков при тяжёлых повреждениях спинного мозга не только возможна, но и необходима.

Экспериментальная работа над химическим нейропротезом пока не шагнула дальше лабораторных исследований над животными, но в 2011 году авторитетный медицинский журнал «The Lancet» дал яркую иллюстрацию того, на что способна стимулирующая терапия в отношении людей. Журнал опубликовал результаты клинико-экспериментальной работы с использованием электрической стимуляции спинного мозга. Нейрофизиологи и врачи из США и России показали, что регулярная тренировка определённых моторных навыков в сочетании с эпидуральной стимуляцией спинного мозга восстанавливала двигательные способности у пациента c полной моторной параплегией, то есть полной утратой контроля над движением. Лечение улучшило функции стояния и поддержания веса тела, элементы локомоторной активности и частичного произвольного контроля движений во время стимуляции.

В результате тренировки и стимуляции удалось не только активировать нейронные сети ниже уровня повреждения, но и в определённой степени восстановить связь между головным мозгом и спинальными моторными центрами - уже упомянутая нейропластичность спинного мозга сделала возможным образование новых нейронных связей, «обходящих» место травмы.

Экспериментальные и клинические исследования показывают высокую эффективность стимуляции спинного мозга и тренировки после тяжёлой вертеброспинальной травмы. Хотя уже получены успешные результаты стимуляции спинного мозга у пациентов с сильнейшим параличом, основная часть исследовательской работы ещё впереди. Кроме того, предстоит разработать спинальные имплантаты для электрохимической стимуляции и найти оптимальные алгоритмы их использования. На всё это сейчас направлены активные усилия ведущих лабораторий мира. Сотни самостоятельных и межлабораторных исследовательских проектов посвящены достижению этих целей. Остаётся надеяться, что в результате совместных усилий мировых научных центров в общепринятые клинические стандарты войдут более эффективные методы лечения парализованных больных.



Похожие статьи

  • Пирог «Шарлотка» с сушеными яблоками Пирожки с сушеными яблоками

    Пирог с сушёными яблоками был очень популярен в деревнях. Готовили его обычно в конце зимы и весной, когда убранные на хранение свежие яблоки уже кончались. Пирог с сушёными яблоками очень демократичен - в начинку к яблокам можно...

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...