Спинной мозг: строение и функции, основы физиологии. Нервные связи и сигналы. Как узнать о болевом пороге и различии температуры

Чтобы контролировать работу всего организма или каждого отдельного органа, моторного аппарата, требуются проводящие пути спинного мозга. Их основной задачей является доставка импульсов, посылаемых человеческим «компьютером» к телу, конечностям. Любой сбой в процессе отправки или принятия импульсов рефлекторной или симпатической природы чреват серьезнейшими патологиями здоровья и всей жизнедеятельности.

Что такое проводящие пути в спинном и головном мозге?

Проводящие пути головного и спинного мозга выступают в роли комплекса нейронных структур. В ходе их работы реализуется посыл импульсных толчков в конкретные области серого вещества. По сути, импульсы представляют собой сигналы, побуждающие тело к действию по призыву мозга. Несколько групп различных в соответствии с функциональными особенностями, представляют собой проводящие пути спинного мозга. К ним относят:

  • проекционные нервные окончания;
  • ассоциативные пути;
  • комиссуральные связующие корешки.

Кроме того, работоспособность спинномозговых проводников обуславливает необходимость выделения следующей классификации, согласно которой они могут быть:

  • моторными;
  • сенсорными.

Чувствительное восприятие и двигательная активность человека

Сенсорные или чувствительные проводящие пути спинного и головного мозга служат незаменимым элементом контакта между этими двумя сложнейшими системами в организме. Они же отправляют импульсивный посыл каждому органу, мышечным волокнам, рукам и ногам. Мгновенный посыл импульсного сигнала - основополагающий момент в осуществлении человеком скоординированных согласованных движений тела, выполняемых без приложения каких-либо осознанных усилий. Импульсы, посылаемые мозгом, нервные волокна могут распознавать через осязание, чувство боли, температурный режим тела, суставно-мышечную моторику.

Двигательные проводящие пути спинного головного мозга предопределяют качество рефлекторной реакции человека. Обеспечивая посыл импульсных сигналов от головы к рефлекторным окончаниям хребта и мышечному аппарату, они наделяют человека способностью самоконтроля моторики - координации. Также на этих проводящих путях лежит ответственность за передачу побуждающих толчков в сторону зрительных и слуховых органов.

Где находятся проводящие пути?

Ознакомившись с анатомическими отличительными чертами спинного мозга, необходимо разобраться с тем, где те самые проводящие пути спинного мозга располагаются, ведь под данным термином предполагается множество нервных материй и волокон. Размещаются они в специфических жизненно необходимых веществах: сером и белом. Соединяя между собой спинномозговые рога и кору левого и правого полушарий, проводящие пути посредством нейронной связи обеспечивают контакт между двумя данными отделами.

Функции проводников главнейших человеческих органов заключаются в реализации предназначенных задач с помощью конкретных отделов. В частности, проводящие пути спинного мозга находятся в пределах верхних позвонков и головы, более подробно описать это можно таким образом:

  1. Ассоциативные связи - своеобразные «мосты», которые связывают области между корой полушарий и ядрами спинномозгового вещества. В их структуре встречаются волокна различных размеров. Относительно короткие не выходят за пределы полушария или его мозговой доли. Более длинные нейроны передают импульсы, проходящие через некоторое расстояние к серому веществу.
  2. Комиссуральные пути представляют собой тело, обладающее мозолистой структурой и выполняющее задачу соединения новообразованных отделов в голове и спинном мозге. Волокна от главной доли распускаются лучеобразно, помещаются они в белой спинномозговой субстанции.
  3. Проекционные нервные волокна находятся непосредственно в спинном мозге. Их работоспособность дает возможность импульсам в сжатые сроки возникать в полушариях и налаживать связь с внутренними органами. Разделение на восходящие и нисходящие проводящие пути спинного мозга касается именно волокон данного типа.

Система восходящих и нисходящих проводников

Восходящие проводящие пути спинного мозга восполняют потребность человека в зрении, слухе, моторных функциях и их контакте с важными системами организма. Рецепторы данных связей находятся в пространстве между гипоталамусом и первыми сегментами позвоночного столба. Восходящие пути спинного мозга способны принять и отправить далее импульсный толчок, поступающий с поверхности верхних слоев эпидермиса и слизистых оболочек, органов жизнеобеспечения.

В свою очередь, нисходящие проводящие пути спинного мозга включают в свою систему следующие элементы:

  • Нейрон пирамидный (берет свое начало в коре полушарий, затем устремляется вниз, минуя мозговой ствол; каждый его пучок располагается на спинномозговых рогах).
  • Нейрон центральный (является моторным, связывающим передние рога и кору полушарий с рефлекторными корешками; вместе с аксонами в цепочку входят и элементы периферической нервной системы).
  • Волокна спиномозжечковые (проводники нижних конечностей и столба спинного мозга, включая клиновидные и тонкие связки).

Обычному человеку, не специализирующемуся в области нейрохирургии, достаточно сложно разобраться в системе, которую представляют сложные проводящие пути спинного мозга. Анатомия этого отдела действительно является запутанной структурой, состоящей из нейронных импульсных передач. Но именно благодаря ей организм человека существует как единое целое. За счет двойного направления, по которому действуют проводящие пути спинного мозга, обеспечивается моментальная передача импульсов, которые несут в себе информацию от управляемых органов.

Проводники глубокой сенсорики

Структура нервных связок, действующая в восходящем направлении, является многосоставной. Данные проводящие пути спинного мозга образованы несколькими элементами:

  • пучок Бурдаха и пучок Голля (представляют собой пути глубокой чувствительности, расположенные с задней стороны позвоночного столба);
  • спиноталамический пучок (находится сбоку спинномозгового столба);
  • пучок Говерса и пучок Флексига (мозжечковые пути, расположенные по бокам столба).

Внутри межпозвоночных узлов расположены глубокой степени чувствительности. Отростки, локализованные на периферических участках, завершаются в наиболее подходящих мышечных тканях, сухожилиях, костно-хрящевых волокнах и их рецепторах.

В свою очередь, центровые отростки клеток, располагаясь позади, держат направление к спинному мозгу. Проводя глубокую чувствительность, задние нервные корешки не углубляются в серое вещество, образуя лишь задние спинномозговые столбы.

Там, где подобные волокна входят в спинной мозг, происходит их разделение на короткие и длинные. Далее проводящие пути спинного и головного мозга отправляются к полушариям, где происходит их кардинальное перераспределение. Основная их часть остается в зонах передних и задних центральных извилин, а также в области темени.

Отсюда следует, что данные пути проводят чувствительность, благодаря которой человек может ощутить, как работает его мышечно-суставный аппарат, почувствовать любое вибрационное движение или тактильное прикосновение. Пучок Голля, находящийся прямо по центру спинного мозга, распределяет чувствительность от нижнего отдела туловища. Пучок Бурдаха расположен выше и служит проводником чувствительности верхних конечностей и соответствующего отдела туловища.

Как узнать о степени сенсорики?

Определить степень глубокой чувствительности можно с помощью нескольких простых тестов. Для их выполнения больному закрывают глаза. Его задачей является определение конкретного направления, в котором врач или исследователь делает движения пассивного характера в суставах пальцев, рук или ног. Желательно также описать подробно позу тела или положение, которое приняли его конечности.

При помощи камертона на предмет вибрационной чувствительности можно исследовать проводящие пути спинного мозга. Функции этого прибора помогут точно определить время, на протяжении которого пациент четко ощущает вибрирование. Для этого берут прибор и нажимают на него, чтобы появился звук. В этот момент необходимо выставить на любой костный выступ на теле. В случае когда такая чувствительность выпадает раньше, чем в других случаях, можно предположить, что поражены задние столбы.

Тест на чувство локализации подразумевает, что больной, закрыв глаза, точно указывает на место, в котором за несколько секунд перед этим к нему прикоснулся исследователь. Удовлетворительным показатель считается тогда, если пациентом допущена погрешность в рамках одного сантиметра.

Сенсорная восприимчивость кожных покровов

Строение проводящих путей спинного мозга позволяет на периферическом уровне определить степень кожной чувствительности. Дело в том, что нервные отростки протонейрона участвуют в кожных рецепторах. Отростки, расположенные по центру в составе задних отростков, устремляются прямо к спинному мозгу, вследствие чего там образуется зона Лисауэра.

Так же, как и путь глубокой чувствительности, кожный складывается из нескольких последовательно объединенных нервных клеток. В сравнении со спиноталамическим пучком нервных волокон информационные импульсы, передаваемые от нижних конечностей или нижнего отдела туловища, находятся немного выше и посередине.

Кожная чувствительность различается по критериям, исходя из природы раздражителя. Она бывает:

  • температурной;
  • тепловой;
  • болевой;
  • тактильной.

При этом последний вид кожной чувствительности, как правило, передается проводниками глубокой чувствительности.

Как узнать о болевом пороге и различии температуры?

Чтобы определить уровень болевых ощущений, врачи применяют метод укалывания. В самых неожиданных местах для пациента врач наносит несколько легких уколов с помощью булавки. Глаза больного должны быть закрыты, т.к. видеть, что происходит, он не должен.

Порог температурной чувствительности определить несложно. При нормальном состоянии человек испытывает различные ощущения при температурах, разница которых составляла порядка 1-2°. Для выявления патологического дефекта в виде нарушения кожной чувствительности врачи используют специальный аппарат - термоэстезиометр. Если же его нет, можно провести тест на теплую и горячую воду.

Патологии, связанные с нарушением проводящих путей

В восходящем направлении проводящие пути спинного мозга образованы в таком положении, благодаря которому человек может ощущать тактильные прикосновения. Для исследования необходимо взять что-то мягкое, нежное и в ритмичном порядке провести тонкое обследование на выявление степени чувствительности, а также проверку реакции волосков, щетинок и т.д.

Расстройствами, вызванными кожной чувствительностью, на сегодняшний день считают такие:

  1. Анестезия - полная утрата чувствительности кожи на конкретной поверхностной области тела. При нарушении болевой чувствительности возникает анальгезия, при температурной - терманестезия.
  2. Гиперестезия - обратное анестезии явление, возникающее при понижении порога возбуждения, при его повышении появляется гипальгезия.
  3. Неправильное восприятие раздражающих факторов (например, пациент путает холодное и теплое) называется дизестезией.
  4. Парестезия - это нарушение, проявлений которого может быть огромное множество, начиная от ползающих мурашек, чувства от удара током и его прохождения через весь организм.
  5. Гиперпатия имеет самую яркую выраженность. Ей свойственно также поражение зрительного бугра, повышение порога возбудимости, невозможность локально определить раздражитель, тяжелая психоэмоциональная окраска всего происходящего и слишком резкая двигательная реакция.

Особенности структуры нисходящих проводников

Нисходящие проводящие пути головного и спинного мозга включают в себя несколько связок, среди которых:

  • пирамидная;
  • рубро-спинальная;
  • вестибуло-спинальная;
  • ретикуло-спинальная;
  • задняя продольная.

Все вышеуказанные элементы - двигательные проводящие пути спинного мозга, которые являются составляющими нервных связок в нисходящем направлении.

Так называемый начинается от огромнейших одноименных клеток, находящихся в верхнем слое полушария мозга, в основном в зоне центральной извилины. Здесь же расположен проводящий путь переднего канатика спинного мозга - этот важный элемент системы направлен вниз и проходит через несколько отделов задней бедренной капсулы. В точке пересечения продолговатого и спинного мозга можно обнаружить неполный перекрест, образующий прямой пирамидный пучок.

В покрышке среднего мозга присутствует проводящий рубро-спинальный путь. Начало он берет от красных ядер. При выходе его волокна перекрещиваются и проходят в спинной мозг через варолиев и продолговатый мозг. Рубро-спинальный путь позволяет проводить импульсы от мозжечка и подкорковых узлов.

Проводящие пути спинного мозга начинаются в ядре Дейтерса. Располагаясь в стволе мозга, вестибуло-спинальный путь продолжается в спинном и оканчивается в его передних рогах. От этого проводника зависит прохождение импульсов от вестибулярного аппарата к периферической системы.

В клетках сетчатой формации заднего мозга начинается ретикуло-спинальный путь, который в белом веществе спинного мозга рассеян отдельными пучками преимущественно сбоку и спереди. По сути, это главный связующий элемент между рефлекторным мозговым центром и опорно-двигательным аппаратом.

Задняя продольная связка также участвует в соединении двигательных структур со стволом головного мозга. От нее зависит работа глазодвигательных ядер и вестибулярного аппарата в целом. Задний продольный пучок находится в шейном отделе позвоночника.

Последствия заболеваний спинного мозга

Таким образом, проводящие пути спинного мозга являются жизненно важными соединительными элементами, предоставляющими человеку возможность движения и чувствительности. Нейрофизиология данных путей связана с особенностями строения позвоночника. Известно, что структура спинного мозга, окруженного мышечными волокнами, имеет цилиндрическую форму. Внутри веществ спинного мозгового ствола ассоциативные и двигательные рефлекторные пути контролируют функциональность всех систем организма.

При возникновении заболевания спинного мозга, механического повреждения или пороков развития проводимость между двумя основными центрами может существенно снизиться. Нарушения проводящих путей угрожают человеку полным прекращением двигательной активности и потерей сенсорного восприятия.

Основной причиной отсутствия импульсной проводимости является отмирание нервных окончаний. Самая сложная степень нарушения проводимости между головным и спинным мозгом заключается в парализации и отсутствиия чувствительности в конечностях. Затем могут наблюдаться проблемы в работе внутренних органов, связанных с мозгом поврежденной нейронной связкой. Например, нарушения в нижнем отделе спинномозгового ствола несут за собой неконтролируемое человеком мочеиспускание и процессы дефекации.

Лечат ли болезни спинного мозга и проводящих путей?

Только появившиеся дегенеративные изменения практически моментально отражаются на проводниковой деятельности спинного мозга. Угнетение рефлексов ведет к явно выраженным патологическим переменам, обусловленным гибелью нейронных волокон. Полностью восстановить нарушенные участки проводимости невозможно. Заболевание наступает стремительно и прогрессирует молниеносно, поэтому избежать грубых нарушений проводимости можно только в том случае, если своевременно начать медикаментозное лечение. Чем раньше это будет сделано, тем больше появится шансов на прекращение патологического развития.

Непроводимость проходящих путей спинного мозга нуждается в лечении, первоочередной задачей которого станет остановка процессов отмирания нервных окончаний. Добиться этого можно только в случае пресечения факторов, повлиявших на возникновение заболевания. Только после этого можно приступать к терапии с целью максимально возможного восстановления чувствительности и двигательных функций.

Лечение медикаментами направлено на прекращение процесса отмирания мозговых клеток. Их задачей является также восстановление нарушенной кровоподачи к поврежденному участку спинного мозга. В ходе лечения врачи учитывают возрастные особенности, характер и степень тяжести повреждения и прогрессирования болезни. В терапии проводящих путей важно поддерживать постоянную стимуляцию нервных волокон с помощью электрических импульсов. Это позволит сохранить удовлетворительный мышечный тонус.

Хирургическое вмешательство проводят с целью восстановления проводимости спиного мозга, поэтому проводят его по двум направлениям:

  1. Пресечение причин парализации деятельности нейронных связей.
  2. Стимулирование спинномозгового ствола для скорейшего приобретения утраченных функций.

Предшествовать операции должно полное медицинское обследование всего организма. Это позволит определить локализацию процессов дегенерации нервных волокон. В случае тяжелейших травм позвоночника необходимо сначала устранить причины компрессии.

ПРОВОДЯЩИЕ ПУТИ ГОЛОВНОГО И СПИННОГО МОЗГА ПРОВОДЯЩИЕ ПУТИ ГОЛОВНОГО И СПИННОГО МОЗГА

ПРОВОДЯЩИЕ ПУТИ ГОЛОВНОГО И СПИННОГО МОЗГА

Проводящими путями называют пучки функционально однородных нервных волокон, соединяющие различные центры в центральной нервной системе, занимающие в белом веществе головного и спинного мозга определенное место и проводящие одинаковые импульсы.

Импульсы, возникающие при воздействии на рецепторы, передаются по отросткам нейронов к их телам. Благодаря многочисленным синапсам нейроны контактируют друг с другом, образуя цепи, по которым нервные импульсы распространяются только в определенном направлении - от рецепторных нейронов через вставочные к эффекторным нейронам. Это обусловлено морфофункциональными особенностями синапсов, которые проводят возбуждение (нервные импульсы) только в одном направлении - от пресинаптической мембраны к постсинаптической.

По одним цепям нейронов импульс распространяется центростремительно - от места возникновения в коже, слизистых оболочках, органах движения, сосудах к спинному или головному мозгу. По другим цепям нейронов импульс проводится центробежно из мозга на периферию к рабочим органам - мышцам и железам. Отростки нейронов направляются из спинного мозга к различным структурам головного мозга, а от них в обратном

Рис. 44. Расположение пучков ассоциативных волокон белого вещества правого полушария большого мозга, медиальная поверхность (схема): 1 - поясная извилина; 2 - верхний продольный пучок; 3 - дугообразные волокна большого мозга; 4 - нижний продольный пучок

направлении - к спинному мозгу и образуют пучки, соединяющие между собой нервные центры. Эти пучки и составляют проводящие пути.

В спинном и головном мозге выделяют три группы нервных волокон (проводящих путей): ассоциативные, комиссуральные и проекционные.

Ассоциативные нервные волокна (короткие и длинные) соединяют между собой группы нейронов (нервные центры), расположенные в одной половине мозга (рис. 44). Короткие (внутридолевые) ассоциативные пути соединяют близлежащие участки серого вещества и располагаются, как правило, в пределах одной доли мозга. Среди них выделяют дугообразные волокна большого мозга (fibrae arcuatae), которые изгибаются дугообразно и соединяют между собой серое вещество соседних извилин, не выходя за пределы коры (интракортикальные) или проходя в белом веществе полушария (экстракортикальные). Длинные (междолевые) ассоциативные пучки соединяют между собой участки серого вещества, расположенные на значительном расстоянии друг от друга, обычно в различных долях. К ним относятся верхний продольный пучок (fasciculus longitudinalis superior), проходящий в верхних слоях белого вещества полушария и соединяющий кору лобной доли с теменной и затылочной;

нижний продольный пучок (fasciculus longitudinalis inferior), лежащий в нижних слоях белого вещества полушария и связывающий серое вещество височной доли с затылочной, и крючковидный пучок (fasciculus uncipatus), соединяющий кору в области лобного полюса с передней частью височной доли. Волокна крючковидного пучка изгибаются дугообразно вокруг островка.

В спинном мозге ассоциативные волокна соединяют между собой нейроны, расположенные в различных сегментах, и образуют собственные пучки спинного мозга (межсегментарные пучки), которые располагаются вблизи серого вещества. Короткие пучки перекидываются через 2-3 сегмента, длинные соединяют далеко отстоящие друг от друга сегменты спинного мозга.

Комиссуральные (спаечные) нервные волокна соединяют одинаковые центры (серое вещество) правого и левого полушарий большого мозга, образуя мозолистое тело, спайку свода и переднюю спайку (рис. 45). Мозолистое тело соединяет между собой новые отделы коры большого мозга правого и левого полушарий. В каждом полушарии волокна расходятся веерообразно, образуя лучистость мозолистого тела (radiatio corporis callori). Передние пучки волокон, проходящие в колене и клюве мозолистого тела, соединяют кору передних отделов лобных долей, образуя лобные щипцы (forceps frontalis). Эти волокна как бы охватывают с двух сторон переднюю часть продольной щели головного мозга. Кору затылочных и задних отделов теменных долей большого мозга соединяют пучки волокон, проходящие в валике мозолистого тела. Они образуют так называемые затылочные щипцы (forceps occipitalis). Изгибаясь кзади, пучки этих волокон как бы охватывают задние отделы продольной щели большого мозга. Волокна, проходящие в центральных отделах мозолистого тела, связывают кору центральных извилин, теменных и височных долей полушарий большого мозга.

В передней спайке проходят волокна, соединяющие между собой участки коры височных долей обоих полушарий, принадлежащие обонятельному мозгу. Волокна спайки свода соединяют серое вещество гиппокампов и височных долей обоих полушарий.

Проекционные нервные волокна (проводящие пути) подразделяются на восходящие и нисходящие. Восходящие связывают спинной мозг с головным, а также ядра мозгового ствола с базальными ядрами и корой полушарий большого мозга. Нисходящие идут в обратном направлении (табл. 1).

Рис. 45. Комиссуральные волокна (лучистость) мозолистого тела, вид сверху. Верхние отделы лобных, теменных и затылочных долей большого мозга удалены: 1 - лобные щипцы (большие щипцы); 2 - мозолистое тело; 3 - медиальная продольная полоска; 4 - латеральная продольная полоска; 5 - затылочные щипцы

(малые щипцы)

Восходящие проекционные пути являются афферентными, чувствительными. По ним к коре большого мозга поступают нервные импульсы, возникшие в результате воздействия на организм различных факторов внешней среды, включая импульсы, идущие от органов чувств, опорно-двигательного аппарата, внутренних органов и сосудов. В зависимости от этого восходящие проекционные пути делятся на три группы: экстероцептивные, проприоцептивные и интероцептивные проводящие пути.

Экстероцептивные проводящие пути несут импульсы от кожного покрова (болевые, температурные, осязания и давления), от органов чувств (зрения, слуха, вкуса, обоняния). Проводящий путь болевой и температурной чувствительности (латеральный спинноталамический путь, tractus spinothalamicus lateralis) состоит из трех нейронов (рис. 46). Рецепторы первых (чувствительных) нейронов, воспринимающие указанные раздражения, располагаются в коже и слизистых оболочках, а тела клеток лежат в спинномозговых узлах. Центральные отростки в составе заднего корешка направляются в задний рог спинного мозга и заканчиваются синапсами на клетках вторых нейронов. Все аксоны вторых нейронов, тела которых лежат в заднем роге, через переднюю серую спайку переходят на противоположную сторону спинного мозга, входят в боковой канатик, включаются в состав латерального спинноталамического пути, который поднимается в продолговатый мозг (кзади от ядра оливы), проходит в покрышке моста и в покрышке среднего мозга, проходя у наружного края медиальной петли. Аксоны заканчиваются, образуя синапсы на клетках, расположенных в задне-латеральном ядре таламуса (третий нейрон). Аксоны этих клеток проходят через заднюю ножку внутренней капсулы и в составе веерообразно расходящихся пучков волокон, образующих лучистый венец (corona radiata), направляются к нейронам внутренней зернистой пластинки коры (IV слой) постцентральной извилины, где находится корковый конец анализатора общей чувствительности. Волокна третьего нейрона чувствительного (восходящего) проводящего пути, соединяющего таламус с корой, образуют таламокортикальные пучки (fasciculi thalamocorticales) - таламотеменные волокна (fibrae thalamoparietales). Латеральный спинноталамический путь является полностью перекрещенным проводящим путем (все волокна второго нейрона переходят на противоположную сторону), поэтому при повреждении одной половины спинного мозга полностью исчезают болевая и температурная чувствительность на противоположной стороне от повреждения.

Проводящий путь осязания и давления (передний спинноталамический путь, tractus spinothalamicus anterior) несет импульсы от кожи, где лежат

Таблица 1. Проводящие пути головного и спинного мозга

Продолжение таблицы 1.

Продолжение таблицы 1

Окончание таблицы 1.

Рис. 46. Проводящие пути болевой и температурной чувствительности,

осязания и давления (схема): 1 - латеральный спинноталамический путь; 2 - передний спинноталамический путь; 3 - таламус; 4 - медиальная петля; 5 - поперечный разрез среднего мозга; 6 - поперечный разрез моста; 7 - поперечный разрез продолговатого мозга; 8 - спинномозговой узел; 9 - поперечный разрез спинного мозга. Стрелками показано направление движения нервных импульсов

рецепторы, к клеткам коры постцентральной извилины. Тела первых нейронов (псевдоуниполярных клеток) лежат в спинномозговых узлах. Центральные отростки этих клеток в составе задних корешков спинномозговых нервов направляются в задний рог спинного мозга. Аксоны нейронов спинномозговых узлов образуют синапсы с нейронами заднего рога спинного мозга (вторые нейроны). Большинство аксонов второго нейрона также переходят на противоположную сторону спинного мозга через переднюю спайку, входят в передний канатик и в его составе следуют вверх, к таламусу. Часть волокон второго нейрона идут в заднем канатике спинного мозга и в продолговатом мозге присоединяются к волокнам медиальной петли. Аксоны второго нейрона образуют синапсы с нейронами задне-латерального ядра таламуса (третий нейрон). Отростки клеток третьего нейрона проходят через заднюю ножку внутренней капсулы, затем в составе лучистого венца направляются к нейронам IV слоя коры постцентральной извилины (внутренней зернистой пластинке). Не все волокна, несущие импульсы осязания и давления, переходят на противоположную сторону в спинном мозге. Часть волокон проводящего пути осязания и давления идет в составе заднего катика спинного мозга (своей стороны) вместе с аксонами проводящего пути проприоцептивной чувствительности коркового направления. В связи с этим при поражении одной половины спинного мозга кожное чувство осязания и давления на противоположной стороне не исчезает полностью, как болевая чувствительность, а только снижается. Этот переход на противоположную сторону частично осуществляется в продолговатом мозге.

Проприоцептивные проводящие пути проводят импульсы от мышц, сухожилий, суставных капсул, связок. Они несут информацию о положении частей тела в пространстве, объеме движений. Проприоцептивная чувствительность позволяет человеку анализировать собственные сложные движения и проводить их целенаправленную коррекцию. Выделяют проприоцептивные пути коркового направления и проприоцептивные пути мозжечкового направления. Проводящий путь проприоцептивной чувствительности коркового направления несет импульсы мышечно-суставного чувства к коре постцентральной извилины большого мозга (рис. 47). Рецепторы первых нейронов, расположенные в мышцах, сухожилиях, суставных капсулах, связках, воспринимают сигналы о состоянии опорно-двигательного аппарата в целом, мышечном тонусе, степени растяжения сухожилий и по спинномозговым нервам направляют эти сигналы к телам первых нейронов этого пути, которые лежат в спинномозговых узлах. Тела

Рис. 47. Проводящий путь проприоцептивной чувствительности

коркового направления (схема): 1 - спинномозговой узел; 2 - поперечный разрез спинного мозга;

3 - задний канатик спинного мозга;

4 - передние наружные дугообразные волокна; 5 - медиальная петля; 6 - таламус; 7 - поперечный разрез среднего мозга; 8 - поперечный разрез моста; 9 - поперечный разрез продолговатого мозга; 10 - задние наружные дугообразные волокна. Стрелками показано направление движения

нервных импульсов

первого нейрона этого пути также лежат в спинномозговых узлах. Аксоны первых нейронов в составе заднего корешка, не входя в задний рог, направляются в задний канатик, где образуют тонкий и клиновидный пучки.

Аксоны, несущие проприоцептивные импулься, входят в задний канатик, начиная с нижних сегментов спинного мозга. Каждый следующий пучок аксонов прилежит с латеральной стороны к уже имеющимся пучкам. Таким образом, наружные отделы заднего канатика (клиновидный пучок, пучок Бурдаха) заняты аксонами клеток, осуществляющих проприоцептивную иннервацию в верхнегрудных, шейных отделах тела и верхних конечностей. Аксоны, занимающие внутреннюю часть заднего канатика (тонкий пучок, пучок Голля), проводят проприоцептивные импульсы от нижних конечностей и нижней половины туловища.

Волокна в составе тонкого и клиновидного пучков следуют наверх в продолговатый мозг к тонкому и клиновидному ядрам, где заканчиваются синапсами на телах вторых нейронов. Аксоны вторых нейронов, выходящие из этих ядер, дугообразно изгибаются вперед и медиально и на уровне нижнего угла ромбовидной ямки переходят на противоположную сторону в межоливном слое продолговатого мозга, образуя перекрест медиальной петли (decussatio lemniscorum medialium). Это внутренние дугообразные волокна (fibrae arcuatae internae), которые формируют начальные отделы медиальной петли. Затем волокна медиальной петли проходят вверх через покрышку моста и покрышку среднего мозга, где располагаются дорсально-латеральнее красного ядра. Эти волокна заканчиваются в дорсальном латеральном ядре таламуса синапсами на телах третьих нейронов. Аксоны клеток таламуса направляются через заднюю ножку внутренней капусулы в составе лучистого венца в кору постцентральной извилины, где образуют синапсы с нейронами IV слоя коры (внутренней зернистой пластинки).

Другая часть волокон вторых нейронов (задние наружные дугообразные волокна, efibrae arcueatae exteernae posterieores) по выходе из тонкого и клиновидного ядер направляется в нижнюю мозжечковую ножку своей стороны и заканчивается синапсами в коре червя. Третья часть аксонов вторых нейронов (передние наружные дугообразные волокна, fibrae arcudtae extdrnae anterieores) переходит на противоположную сторону и также через нижнюю мозжечковую ножку противоположной стороны направляется к коре червя. Проприоцептивные импульсы по этим волокнам идут к мозжечку для коррекции подсознательных движений опорно-двигательного аппарата.

Итак, проприоцептивный путь коркового направления также перекрещенный. Аксоны второго нейрона переходят на противоположную сторону не в спинном мозге, а в продолговатом мозге. При повреждении

спинного мозга на стороне возникновения проприоцептивных импульсов (при травме мозгового ствола - на противоположной стороне) теряется представление о состоянии опорно-двигательного аппарата, положении частей тела в пространстве, нарушается координация движений.

Имеются проприоцептивные проводящие пути мозжечкового направления - передний и задний спинномозжечковые проводящие пути, которые несут в мозжечок информацию о состоянии опорно-двигательного аппарата и двигательных центров спинного мозга.

Задний спинномозжечковый проводящий путь (пучок Флексига) (tractus spinocerebellaris posterior) (рис. 48) несет импульсы от рецепторов, расположенных в мышцах, сухожилиях, суставных капсулах, связках в мозжечок. Тела первых нейронов (псевдоуниполярных клеток) расположены в спинномозговых узлах. Центральные отростки этих клеток в составе задних корешков спинномозговых нервов направляются в задний рог спинного мозга, где образуют синапсы с нейронами грудного ядра (столб Кларка), лежащего в медиальной части основания заднего рога (вторые нейроны). Аксоны вторых нейронов проходят в задней части бокового

Рис. 48. Задний спинеомозжечковый проводящий путь:

1 - поперечный разрез спинного мозга; 2 - поперечный разрез продолговатого мозга; 3 - кора мозжечка; 4 - зубчатое ядро; 5 - шаровидное ядро; 6 - синапс в коре червя мозжечка; 7 - нижняя мозжечковая ножка; 8 - дорсальный (задний) спинномозжечковый путь; 9 - спинномозговой узел

канатика спинного мозга своей стороны, поднимаются вверх и через нижнюю мозжечковую ножку направляются в мозжечок, где образуют синапсы с клетками коры червя мозжечка (задне-нижние отделы).

Передний спинномозжечковый проводящий путь (пучок Говерса) (tractus spinocerebellaris anterior) (рис. 49) также несет импульсы от рецепторов, расположенных в мышцах, сухожилиях, суставных капсулах, в мозжечок. Эти импульсы по волокнам спинномозговых нервов, являющихся периферическими отростками псевдоуниполярных клеток спинномозговых узлов (первые нейроны), направляются в задний рог, где образуют синапсы с нейронами центрального промежуточного (серого) вещества спинного мозга (вторые нейроны). Аксоны этих волокон переходят через переднюю серую спайку на противоположную сторону в переднюю часть бокового канатика спинного мозга и поднимаются вверх. На уровне перешейка ромбовидного мозга эти волокна образуют второй перекрест, возвращаются на свою сторону и через верхнюю мозжечковую ножку входят в мозжечок к клеткам передне-верхних отделов коры червя

Рис. 49. Передний спинномозжечковый проводящий путь: 1 - поперечный разрез спинного мозга; 2 - передний спинномозжечковый путь; 3 - поперечный разрез продолговатого мозга; 4 - синапс в коре червя мозжечка; 5 - шаровидное ядро; 6 - кора мозжечка; 7 - зубчатое ядро; 8 - спинномозговой узел

мозжечка. Таким образом, передний спинномозжечковый путь, сложный и дважды перекрещенный, возвращается на ту же сторону, на которой возникли проприоцептивные импульсы. Проприоцептивные импульсы, поступившие в кору червя по спинномозжечковым проприоцептивным путям, передаются в красные ядра и через зубчатое ядро в кору большого мозга (в постцентральную извилину) по мозжечково-таламическому и мозжечково-покрышечному путям (рис. 50).

Можно проследить системы волокон, по которым импульс из коры червя достигает красного ядра, полушария мозжечка и даже вышележащих отделов мозга - коры полушарий большого мозга. Из коры червя через пробковидное и шаровидное ядра импульс через верхнюю мозжечковую ножку направляется к красному ядру противоположной стороны (мозжечково-покрышечный путь). Кора червя связана ассоциативными волокнами с корой полушария мозжечка, откуда импульсы поступают в зубчатое ядро мозжечка.

С развитием высших центров чувствительности и произвольных движений в коре полушарий большого мозга возникли также связи мозжечка с корой, осуществляющиеся через таламус. Таким образом, из зубчатого ядра аксоны его клеток через верхнюю мозжечковую ножку выходят в покрышку моста, переходят на противоположную сторону и направляются к таламусу. Переключившись в таламусе на следующий нейрон, импульс следует в кору большого мозга, в постцентральную извилину.

Интероцептивные проводящие пути проводят импульсы от внутренних органов, сосудов, тканей организма. Их механо-, баро-, хеморецепторы воспринимают информацию о состоянии гомеостаза (интенсивности обменных процессов, химическом составе тканевой жидкости и крови, давлении в сосудах и т. д.).

В кору полушарий большого мозга поступают импульсы по прямым восходящим чувствительным путям и из подкорковых центров.

Из коры полушарий большого мозга и подкорковых центров (из ядер ствола мозга) берут начало нисходящие пути, управляющие двигательными функциями организма (произвольными движениями).

Нисходящие двигательные проводящие пути проводят импульсы к нижележащим отделам центральной нервной системы - к ядрам мозгового ствола и к двигательным ядрам передних рогов спинного мозга. Эти пути подразделяются на пирамидные и экстрапирамидные. Пирамидные проводящие пути являются главными двигательными путями.

Рис. 50. Мозжечково-таламический и мозжечково-покрышечный проводящие

1 - кора полушарий большого мозга; 2 - таламус; 3 - поперечный разрез среднего мозга; 4 - красное ядро; 5 - мозжечково-таламический путь; 6 - мозжечково-покрышечный путь; 7 - шаровидное ядро мозжечка; 8 - кора мозжечка; 9 - зубчатое ядро; 10 - пробковидное ядро

Через подконтрольные сознанию двигательные ядра головного и спинного мозга они несут импульсы из коры большого мозга к скелетным мышцам головы, шеи, туловища, конечностей. несут импульсы от подкорковых центров и различных отделов коры также к двигательным и другим ядрам черепных и спинномозговых нервов.

Главный двигательный, или пирамидный, проводящий путь представляет собой систему нервных волокон, по которым произвольные двигательные импульсы от пирамидной формы невроцитов (пирамидных клеток Беца), расположенных в коре предцентральной извилины (V слой), направляются к двигательным ядрам черепных нервов и к передним рогам спинного мозга, а от них к скелетным мышцам. В зависимости от направления и расположения волокон пирамидный путь делится на корково-ядерный путь, идущий к ядрам черепных нервов, и корково-спинномозговой путь. В последнем выделяют латеральный и передний корково-спинномозговые (пирамидные) проводящие пути, идущие к ядрам передних рогов спинного мозга (рис. 51).

Корково-ядерный проводящий путь (tractus corticonuclearis) представляет собой пучок аксонов гигантопирамидных клеток, залегающих в нижней трети предцентральной извилины. Аксоны этих клеток (первый нейрон) проходят через колено внутренней капсулы, основание ножки мозга. Затем волокна корково-ядерного пути переходят на противоположную сторону к двигательным ядрам черепных нервов: III и IV - в среднем мозге; V, VI, VII - в мосту; IX, X, XI и XII - в продолговатом мозге, где и заканчиваются синапсами на их нейронах (вторые нейроны). Аксоны двигательных нейронов ядер черепных нервов выходят из головного мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам головы и шеи. Они осуществляют управление осознанными движениями мышц головы и шеи.

Латеральный и передний корково-спинномозговые (пирамидные) проводящие пути (tractus corticospinales (pyramidales) anterior et lateralis) управляют осознанными движениями мышц туловища и конечностей. Они начинаются от пирамидной формы невроцитов (клеток Беца), расположенных в V слое коры средней и верхней третей предцентральной извилины (первые нейроны). Аксоны этих клеток направляются к внутренней капсуле, проходят через переднюю часть ее задней ножки, позади волокон корково-ядерного пути. Затем волокна через основание ножки мозга (латеральнее волокон корково-ядерного пути) переходят

Рис. 51. Схема пирамидных проводящих путей:

1 - предцентральная извилина; 2 - таламус; 3 - корково-ядерный путь; 4 - поперечный разрез среднего мозга; 5 - поперечный разрез моста; 6 - поперечный разрез продолговатого мозга; 7 - перекрест пирамид; 8 - латеральный корково-спинномозговой путь; 9 - поперечный разрез спинного мозга; 10 - передний корковоспинномозговой путь. Стрелками показано направление движения нервных импульсов

через мост в пирамиду продолговатого мозга. На границе продолговатого мозга со спинным часть волокон корково-спинномозгового пути переходит на противоположную сторону на границе продолговатого мозга со спинным. Затем волокна продолжаются в боковой канатик спинного мозга (латеральный корково-спинномозговой проводящий путь) и постепенно заканчиваются в передних рогах спинного мозга синапсами на двигательных клетках (корешковых нейроцитах) передних рогов (второй нейрон).

Волокна корково-спинномозгового проводящего пути, не переходящие на противоположную сторону на границе продолговатого мозга со спинным, спускаются вниз в составе переднего канатика спинного мозга, образуя передний корково-спинномозговой проводящий путь. Эти волокна посегментно переходят на противоположную сторону через белую спайку спинного мозга и заканчиваются синапсами на двигательных (корешковых) невроцитах переднего рога противоположной стороны спинного мозга (вторые нейроны). Аксоны клеток передних рогов выходят из спинного мозга в составе передних корешков и, являясь частью спинномозговых нервов, иннервируют скелетные мышцы. Итак, все пирамидные проводящие пути являются перекрещенными. Поэтому при одностороннем повреждении спинного мозга или головного мозга развивается паралич мышц противоположной стороны, которые иннервируются из сегментов, расположенных ниже зоны повреждения.

Экстрапирамидные проводящие пути имеют связи с ядрами ствола мозга и с корой полушарий большого мозга, которая управляет экстрапирамидной системой. Влияние коры большого мозга осуществляется через мозжечок, красные ядра, ретикулярную формацию, связанную с таламусом и полосатым телом, через вестибулярные ядра. Одной из функций красных ядер является поддержание мышечного тонуса, необходимого для непроизвольного удержания тела в равновесии. Красные ядра, в свою очередь, получают импульсы из коры полушарий большого мозга, из мозжечка. От красного ядра нервные импульсы направляются к двигательным ядрам передних рогов спинного мозга (красноядерноспинномозговой путь) (рис. 52).

Красноядерно-спинномозговой путь (tractus rubrospinalis) поддерживает тонус скелетных мышц и управляет автоматическими привычными движениями. Первые нейроны этого пути залегают в красном ядре среднего мозга. Их аксоны переходят на противоположную сторону в среднем мозге (перекрест Фореля), проходят через покрышку ножек мозга,

Рис. 52. Красноядерно-спинномозговой проводящий путь (схема): 1 - разрез среднего мозга; 2 - красное ядро; 3 - красноядерно-спинномозговой путь; 4 - кора мозжечка; 5 - зубчатое ядро мозжечка; 6 - разрез продолговатого мозга; 7 - разрез спинного мозга. Стрелками показано направление движения

нервных импульсов

покрышку моста и продолговатый мозг. Далее аксоны следуют в составе бокового канатика спинного мозга противоположной стороны. Волокна красноядерно-спинномозгового пути образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны). Аксоны этих клеток участвуют в формировании передних корешков спинномозговых нервов.

Преддверно-спинномозговой проводящий путь (tr a ctus vestibulospinalis, или пучок Левенталя), поддерживает равновесие тела и головы в пространстве, обеспечивает установочные реакции тела при нарушении равновесия. Первые нейроны этого пути залегают в латеральном ядре (Дейтерса) и нижнем вестибулярном ядре продолговатого мозга и моста (преддверноулитковый нерв). Эти ядра связаны с мозжечком и задним продольным пучком. Аксоны нейронов вестибулярных ядер проходят в продолговатом мозге, затем в составе переднего канатика спинного мозга на границе с боковым канатиком (своей стороны). Волокна этого пути образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны), аксоны которых участвуют в формировании передних (двигательных) корешков спинно-мозговых нервов. Задний продольный пучок (fasciculus longitudinalis post e rior), в свою очередь, связан с ядрами черепных нервов. Это обеспечивает сохранение положения глазного яблока при движениях головы и шеи.

Ретикуло-спинномозговой путь (tractus reticulospinalis) поддерживает тонус скелетных мышц, регулирует состояние спинномозговых вегетативных центров. Первые нейроны этого пути залегают в ретикулярной формации ствола мозга (промежуточное ядро Кахаля, ядро эпиталамической (задней) спайки Даркшевича и др.). Аксоны нейронов этих ядер проходят через средний мозг, мост, продолговатый мозг. Аксоны нейронов промежуточного ядра (Кахаля) не перекрещиваются, они проходят в составе переднего канатика спинного мозга своей стороны. Аксоны клеток ядра эпиталамической спайки (Даршкевича) проходят на противоположную сторону через эпиталамическую (заднюю) спайку и идут в составе переднего канатика противоположной стороны. Волокна образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны).

Покрышечно-спинальный путь (tractus tectospinalis) осуществляет связи четверохолмия со спинным мозгом, передает влияния подкорковых центров зрения и слуха на тонус скелетной мускулатуры, участвует в формировании защитных рефлексов. Первые нейроны лежат в ядрах верхних

и нижних холмиков четверохолмия среднего мозга. Аксоны этих клеток проходят через мост, продолговатый мозг, переходят на противоположную сторону под водопроводом мозга, образуя фонтановидный, или мейнертовский, перекрест. Далее нервные волокна проходят в составе переднего канатика спинного мозга противоположной стороны. Волокна образуют синапсы с двигательными нейронами ядер передних рогов спинного мозга (вторые нейроны). Их аксоны участвуют в формировании передних (двигательных) корешков спинномозговых нервов.

Корково-мозжечковый проводящий путь (tractus corticocerebellaris) осуществляет управление функциями мозжечка, участвующего в координации движений головы, туловища и конечностей. Первые нейроны этого пути залегают в коре лобной, височной, теменной и затылочной долей большого мозга. Аксоны нейронов лобной доли (лобно-мостовые волокна - пучок Арнольда) направляются во внутреннюю капсулу и проходят через ее переднюю ножку. Аксоны нейронов височной, теменной и затылочной долей (теменно-височно-затылочно-мостовые волокна - пучок Тюрка) проходят в составе лучистого венца, затем через заднюю ножку внутренней капсулы. Все волокна следуют через основание ножки мозга в мост, где заканчиваются синапсами на нейронах собственных ядер моста своей стороны (вторые нейроны). Аксоны этих клеток переходят на противоположную сторону в виде поперечных волокон моста, затем в составе средней мозжечковой ножки следуют в полушарие мозжечка противоположной стороны.

Таким образом, проводящие пути головного и спинного мозга устанавливают связи между афферентными и эфферентными (эффекторными) центрами, замыкают сложные рефлекторные дуги в теле человека. Одни рефлекторные пути замыкаются на ядрах, лежащих в мозговом стволе и обеспечивающих функции с определенным автоматизмом, без участия сознания, хотя и под контролем полушарий большого мозга. Другие рефлекторные пути замыкаются с участием функций коры полушарий большого мозга, высших отделов центральной нервной системы и обеспечивают произвольные действия органов аппарата движения.



Для контроля над работой внутренних органов, двигательных функций, своевременного получения и передачи симпатических и рефлекторных импульсов, используются проводящие пути спинного мозга. Нарушения в передачи импульсов приводит к серьезным сбоям в работе всего организма.

В чём заключается проводящая функция спинного мозга

Под термином «проводящие пути», подразумевается совокупность нервных волокон, обеспечивающих передачу сигналов в различные центры серого вещества. Восходящие и нисходящие пути спинного мозга выполняют основную функцию – передачу импульсов. Принято различать три группы нервных волокон:
  1. Ассоциативные проводящие пути.
  2. Комиссуральные связи.
  3. Проекционные нервные волокна.
Помимо такого разделения, в зависимости от основной функции, принято различать:

Чувствительные и двигательные пути обеспечивают прочную взаимосвязь между спинным и головным мозгом, внутренними органами, мышечной системой и опорно-двигательным аппаратом. Благодаря быстрой передаче импульсов, все движения тела осуществляются согласованным образом, без ощутимых усилий со стороны человека.

Чем образованы проводящие спинномозговые пути

Основные проводящие пути образованы связками клеток - нейронов. Такое строение обеспечивает необходимую скорость передачи импульсов.

Классификация проводящих путей зависит от функциональных особенностей нервных волокон:

  • Восходящие проводящие пути спинного мозга – считывают и передают сигналы: с кожи и слизистых человека, органов жизнеобеспечения. Обеспечивают выполнение функций опорно-двигательного аппарата.
  • Нисходящие проводящие пути спинного мозга – передают импульсы непосредственно рабочим органам тела человека – мышечным тканям, железам и т.д. Соединены непосредственно с корковой частью серого вещества. Передача импульсов происходит через спинномозговую нейронную связь, к внутренним органам.

Спинной мозг имеет двойное направление проводящих путей, что обеспечивает быструю импульсную передачу информации от контролируемых органов. Проводниковая функция спинного мозга осуществляется благодаря наличию эффективной передачи импульсов по нервной ткани.

В медицинской и анатомической практике принято использовать следующие термины:

Где располагаются проводящие пути мозга спины

Все нервные ткани располагаются в сером и белом веществе, соединяют спинномозговые рога и кору полушарий.

Морфофункциональная характеристика нисходящих проводящих путей спинного мозга ограничивает направление импульсов только в одном направлении. Раздражение синапсов осуществляется от пресинаптической к постсинаптической мембране.

Проводниковой функции спинного и головного мозга соответствуют следующие возможности и расположение основных восходящих и снисходящих путей:

  • Ассоциативные проводящие пути – являются «мостиками», соединяющими участки между корой и ядрами серого вещества. Состоят из коротких и длинных волокон. Первые, находятся в пределах одной половины или доли мозговых полушарий.
    Длинные волокна способны передавать сигналы через 2-3 сегмента серого вещества. В спинномозговом веществе нейроны образуют межсегментарные пучки.
  • Комиссуральные волокна – образуют мозолистое тело, соединяющее новообразованные отделы спинного и головного мозга. Расходятся лучистым способом. Расположены в белом веществе мозговой ткани.
  • Проекционные волокна – место расположения проводящих путей в спинном мозге позволяет импульсам максимально быстро достигать коры полушарий. По характеру и функциональным особенностям, проекционные волокна делятся на восходящие (афферентные пути) и нисходящие.
    Первые разделяют на экстерорецептивные (зрение, слух), проприорецептивные (двигательные функции), интерорецептивные (связь с внутренними органами). Рецепторы располагаются между позвоночным столбом и гипоталамусом.
К нисходящим проводящим путям спинного мозга относятся:

Анатомия проводящих путей достаточно сложна для человека, не имеющего медицинского образования. Но нейронная передача импульсов и является тем, что делает организм человека единым целым.

Последствия повреждений проводящих путей

Чтобы понять нейрофизиологию сенсорных и двигательных путей, следует немного познакомиться с анатомией позвоночника. Спинной мозг имеет структуру, во многом напоминающую цилиндр, окруженный мышечной тканью.

Внутри серого вещества проходят проводящие пути, контролирующие работу внутренних органов, а также двигательные функции. Ассоциативные проводящие пути отвечают за болевые и тактильные ощущения. Двигательные – за рефлекторные функции организма.

В результате травмы, пороков развития или заболеваний спинного мозга, проводимость может снизиться или полностью прекратиться. Происходит это по причине отмирания нервных волокон. Для полного нарушения проводимости импульсов спинного мозга характерна парализация, отсутствие чувствительности конечностей. Начинаются сбои в работе внутренних органов, за которые отвечает поврежденная нейронная связь. Так, при поражении нижней части спинного мозга, наблюдается недержание мочи и самопроизвольная дефекация.

Рефлекторная и проводниковая деятельность спинного мозга нарушается сразу после возникновения дегенеративных патологических изменений. Происходит отмирание нервных волокон, тяжело поддающихся восстановлению. Болезнь быстро прогрессирует и наступает грубое нарушение проводимости. По этой причине приступать к медикаментозному лечению необходимо как можно раньше.

Как восстановить проходимость в спинном мозге

Лечение непроводимости в первую очередь связано с необходимостью прекращения отмирания нервных волокон, а также устранению причин, ставших катализатором патологических изменений.

Медикаментозное лечение

Заключается в назначении препаратов, препятствующих отмиранию клеток мозга, а также достаточному кровоснабжения поврежденного участка спинного мозга. При этом учитываются возрастные особенности проводящей функции спинного мозга, а также серьезность травмы или заболевания.

Для дополнительной стимуляции нервных клеток проводится лечение электрическими импульсами, помогающее поддерживать мышечный тонус.

Хирургическое лечение

Операция по восстановлению проводимости спинного мозга затрагивает два основных направления:
  • Устранение катализаторов, ставших причиной парализации работы нейронных связей.
  • Стимуляция спинного мозга с целью восстановления потерянных функций.
Перед назначением операции проводится общее обследование организма и определение локализации дегенеративных процессов. Так как перечень проводящих путей достаточно большой, нейрохирург стремится сузить поиски с помощью дифференциальной диагностики. При тяжелых травмах крайне важно быстро устранить причины компрессии позвоночника.

Народная медицина при нарушении проводимости

Народные средства при нарушении проводимости спинного мозга, если и используются, должны применяться с особой осторожностью, чтобы не привести к ухудшению состояния пациента.

Особой популярностью пользуются:

Полностью восстановить нейронные связи после травмы достаточно сложно. Многое зависит от быстрого обращения в медицинский центр и квалифицированной помощи нейрохирурга. Чем больше времени пройдет от начала дегенеративных изменений, тем меньше шансов на восстановление функциональных возможностей спинного мозга.

Спинной мозг – это часть центральной нервной системы. Он располагается в позвоночном канале. Представляет собой толстостенную трубку с узким каналом внутри, несколько сплюснутую в передне-заднем направлении. Имеет довольно сложное строение и обеспечивает передачу нервных импульсов от головного мозга к периферическим структурам нервной системы, а также осуществляет собственную рефлекторную деятельность. Без функционирования спинного мозга невозможны нормальное дыхание, сердцебиение, пищеварение, мочеиспускание, сексуальная деятельность, любые движения в конечностях. Из этой статьи Вы сможете узнать о строении спинного мозга и особенностях его функционирования и физиологии.

Спинной мозг закладывается на 4-й неделе внутриутробного развития. Обычно женщина еще даже не подозревает, что у нее будет ребенок. В течение всей беременности происходит дифференцировка различных элементов, а некоторые отделы спинного мозга полностью заканчивают свое формирование уже после рождения в течение первых двух лет жизни.


Как выглядит спинной мозг внешне?

Начало спинного мозга условно определяется на уровне верхнего края I шейного позвонка и большого затылочного отверстия черепа. В этой области спинной мозг мягко перестраивается в головной мозг, четкого разделения между ними нет. В этом месте осуществляется перекрест так называемых пирамидных путей: проводников, ответственных за движения конечностей. Нижний край спинного мозга соответствует верхнему краю II поясничного позвонка. Таким образом, длина спинного мозга оказывается меньше, чем длина позвоночного канала. Именно эта особенность расположения спинного мозга позволяет проводить спинномозговую пункцию на уровне III - IV поясничных позвонков (невозможно повредить спинной мозг при люмбальной пункции между остистыми отростками III - IV поясничных позвонков, так как его там попросту нет).

Размеры спинного мозга человека следующие: длина приблизительно 40-45 см, толщина – 1-1,5 см, вес – около 30-35 г.

По длине выделяют несколько отделов спинного мозга:

  • шейный;
  • грудной;
  • поясничный;
  • крестцовый;
  • копчиковый.

В области шейного и пояснично-крестцового уровней спинной мозг толще, чем в других отделах, потому что в этих местах располагаются скопления нервных клеток, обеспечивающих движения рук и ног.

Последние крестцовые сегменты вместе с копчиковым называются конусом спинного мозга из-за соответствующей геометрической формы. Конус переходит в терминальную (конечную) нить. Нить уже не имеет нервных элементов в своем составе, а только лишь соединительную ткань, и покрыта оболочками спинного мозга. Терминальная нить фиксируется ко II копчиковому позвонку.

Спинной мозг на всем своем протяжении покрыт 3-мя мозговыми оболочками. Первая (внутренняя) оболочка спинного мозга называется мягкой. Она несет в себе артериальные и венозные сосуды, которые обеспечивают кровоснабжение спинного мозга. Следующая оболочка (средняя) – паутинная (арахноидальная). Между внутренней и средней оболочками находится субарахноидальное (подпаутинное) пространство, содержащее спинномозговую жидкость (ликвор). При проведении спинномозговой пункции игла должна попасть именно в это пространство, чтобы можно было взять ликвор на анализ. Наружная оболочка спинного мозга – твердая. Твердая мозговая оболочка продолжается до межпозвоночных отверстий, сопровождая нервные корешки.

Внутри позвоночного канала спинной мозг фиксируется к поверхности позвонков с помощью связок.

Посередине спинного мозга на всем его протяжении находится узенькая трубочка, центральный канал. Она также содержит спинномозговую жидкость.

Со всех сторон вглубь спинного мозга вдаются углубления – щели и борозды. Самые крупные из них – передняя и задняя срединные щели, которые разграничивают две половины спинного мозга (левую и правую). В каждой половине имеются дополнительные углубления (борозды). Борозды дробят спинной мозг на канатики. В итоге получается два передних, два задних и два боковых канатика. Подобное анатомическое деление имеет под собой функциональное основание – в разных канатиках проходят нервные волокна, несущие различную информацию (о боли, о прикосновениях, о температурных ощущениях, о движениях и т.д.). В борозды и щели проникают кровеносные сосуды.

Сегментарное строение спинного мозга – что это?

Как же спинной мозг связан с органами? В поперечном направлении спинной мозг разделяется на особые отделы, или сегменты. Из каждого сегмента выходят корешки, пара передних и пара задних, которые и осуществляют связь нервной системы с другими органами. Корешки выходят из позвоночного канала, формируют нервы, которые направляются к различным структурам организма. Передние корешки передают информацию преимущественно о движениях (стимулируют мышечное сокращение), поэтому называются двигательными. Задние корешки несут в спинной мозг информацию от рецепторов, то есть посылают информацию об ощущениях, поэтому их называют чувствительными.

Количество сегментов у всех людей одинаковое: 8 шейных сегментов, 12 грудных, 5 поясничных, 5 крестцовых и 1-3 копчиковых (чаще 1). Корешки из каждого сегмента устремляются в межпозвоночное отверстие. Поскольку длина спинного мозга короче, чем длина позвоночного канала, то корешки меняют свое направление. В шейном отделе они направлены горизонтально, в грудном - косо, в поясничном и крестцовом отделах – почти вертикально вниз. Из-за разницы в длине спинного мозга и позвоночника также меняется и расстояние от выхода корешков из спинного мозга до межпозвоночного отверстия: в шейном отделе корешки самые короткие, а в пояснично-крестцовом – самые длинные. Корешки четырех нижних поясничных, пяти крестцовых и копчикового сегментов образуют так называемый конский хвост. Именно он и располагается в позвоночном канале ниже II поясничного позвонка, а не сам спинной мозг.

За каждым сегментом спинного мозга закреплена строго очерченная зона иннервации на периферии. В эту зону входит участок кожи, определенные мышцы, кости, часть внутренних органов. Эти зоны практически одинаковы у всех людей. Эта особенность строения спинного мозга позволяет диагностировать место расположения патологического процесса при заболевании. Например, зная, что чувствительность кожи в области пупка регулируется 10-м грудным сегментом, при утрате ощущений прикосновения к коже ниже этой области, можно предположить, что патологический процесс в спинном мозге расположен ниже 10-го грудного сегмента. Подобный принцип работает только с учетом сопоставления зон иннервации всех структур (и кожи, и мышц, и внутренних органов).

Если произвести срез спинного мозга в поперечном направлении, то он будет выглядеть неодинаково по цвету. На срезе можно увидеть два цвета: серый и белый. Серый цвет – это место расположения тел нейронов, а белый цвет - это периферические и центральные отростки нейронов (нервные волокна). Всего в спинном мозге насчитывается более 13 миллионов нервных клеток.

Тела нейронов серого цвета так расположены, что имеют причудливую форму бабочки. У этой бабочки четко прослеживаются выпуклости – передние рога (массивные, толстые) и задние рога (значительно тоньше и мельче). В некоторых сегментах есть еще и боковые рога. В области передних рогов содержатся тела нейронов, отвечающих за движения, в области задних рогов – нейроны, воспринимающие чувствительные импульсы, в боковых рогах – нейроны вегетативной нервной системы. В некоторых отделах спинного мозга сконцентрированы тела нервных клеток, отвечающих за функции отдельных органов. Места локализации этих нейронов изучены и четко определены. Так, в 8-м шейном и 1-м грудном сегменте располагаются нейроны, отвечающие за иннервацию зрачка глаза, в 3 - 4-м шейных сегментах – за иннервацию главной дыхательной мышцы (диафрагмы), в 1 - 5-м грудных сегментах – за регуляцию сердечной деятельности. Зачем это нужно знать? Это используется в клинической диагностике. Например, известно, что боковые рога 2 - 5-го крестцовых сегментов спинного мозга регулируют деятельность органов малого таза (мочевого пузыря и прямой кишки). При наличии патологического процесса в этой области (кровоизлияние, опухоль, разрушение при травме и др.) у человека развивается недержание мочи и кала.

Отростки тел нейронов образуют связи друг с другом, с разными частями спинного и головного мозга, соответственно стремятся вверх и вниз. Эти нервные волокна, имеющие белый цвет, и составляют белое вещество на поперечном срезе. Они же и формируют канатики. В канатиках волокна распределяются в особой закономерности. В задних канатиках располагаются проводники от рецепторов мышц и суставов (суставно-мышечное чувство), от кожи (узнавание предмета на ощупь с закрытыми глазами, ощущение прикосновения), то есть информация идет в восходящем направлении. В боковых канатиках проходят волокна, несущие информацию о прикосновении, боли, температурной чувствительности в головной мозг, в мозжечок о положении тела в пространстве, мышечном тонусе (восходящие проводники). Кроме того, боковые канатики содержат и нисходящие волокна, обеспечивающие движения тела, программируемые в головном мозге. В передних канатиках проходят как нисходящие (двигательные), так и восходящие (ощущение давления на кожу, осязание) пути.

Волокна могут быть короткими, в таком случае они соединяют сегменты спинного мозга между собой, и длинными, тогда они осуществляют связь с головным мозгом. В некоторых местах волокна могут совершать перекрест или просто переходить на противоположную сторону. Перекрест разных проводников происходит на разных уровнях (например, волокна, отвечающие за чувство боли и температурную чувствительность, перекрещиваются на 2-3 сегмента выше уровня вступления в спинной мозг, а волокна суставно-мышечного чувства идут неперекрещенными до самых верхних отделов спинного мозга). Результатом этого становится следующий факт: в левой половине спинного мозга проходят проводники от правых частей тела. Это касается не всех нервных волокон, но особенно характерно для чувствительных отростков. Изучение хода нервных волокон также необходимо для диагностики места поражения при заболевании.


Кровоснабжение спинного мозга

Питание спинного мозга обеспечивается кровеносными сосудами, идущими от позвоночных артерий и от аорты. Самые верхние шейные сегменты получают кровь из системы позвоночных артерий (как и часть головного мозга) по так называемым передней и задним спинальным артериям.

По ходу всего спинного мозга в переднюю и задние спинальные артерии впадают дополнительные сосуды, несущие кровь от аорты, - корешково-спинальные артерии. Последние также бывают передние и задние. Количество подобных сосудов обусловлено индивидуальными особенностями. Обычно передних корешково-спинальных артерий около 6-8, они более крупные в диаметре (наиболее толстые подходят к шейному и поясничному утолщениям). Нижняя корешково-спинальная артерия (самая крупная) называется артерией Адамкевича. У некоторых людей имеется дополнительная корешково-спинальная артерия, идущая от крестцовых артерий, – артерия Депрож-Готтерона. Зона кровоснабжения передних корешково-спинальных артерий занимает следующие структуры: передние и боковые рога, основание бокового рога, центральные отделы переднего и бокового канатиков.

Задних корешково-спинальных артерий на порядок больше, чем передних, – от 15 до 20. Но они имеют меньший диаметр. Зоной их кровоснабжения является задняя треть спинного мозга в поперечном разрезе (задние канатики, основная часть заднего рога, часть боковых канатиков).

В системе корешково-спинальных артерий существуют анастомозы, то есть места соединения сосудов между собой. Это играет важную роль в питании спинного мозга. В случае, если какой-то сосуд перестает функционировать (например, тромб перекрыл просвет), то кровь поступает по анастомозу, и нейроны спинного мозга продолжают выполнять свои функции.

Вены спинного мозга сопровождают артерии. Венозная система спинного мозга имеет обширные связи с позвоночными венозными сплетениями, венами черепа. Кровь от спинного мозга по целой системе сосудов оттекает в верхнюю и нижнюю полые вены. В месте прохождения вен спинного мозга через твердую мозговую оболочку имеются клапаны, не позволяющие крови течь в обратном направлении.


Функции спинного мозга

По существу у спинного мозга всего две функции:

  • рефлекторная;
  • проводниковая.

Рассмотрим подробнее каждую из них.

Рефлекторная функция спинного мозга

Рефлекторная функция спинного мозга состоит в ответной реакции нервной системы на раздражение. Вы прикоснулись к горячему и невольно отдернули руку? Это рефлекс. Вам что-то попало в горло, и Вы закашлялись? Это тоже рефлекс. Многие наши повседневные действия основаны именно на рефлексах, которые осуществляются благодаря спинному мозгу.

Итак, рефлекс – это ответная реакция. Как же она воспроизводится?

Чтобы было понятнее, давайте в качестве примера возьмем реакцию отдергивания руки в ответ на прикосновение к горячему предмету (1). В коже кисти находятся рецепторы (2), воспринимающие тепло или холод. Когда человек прикасается к горячему, то от рецептора по периферическому нервному волокну (3) импульс (сигнализирующий о «горячем») стремится к спинному мозгу. У межпозвоночного отверстия располагается спинномозговой узел, в котором находится тело нейрона (4), по периферическому волокну которого пришел импульс. Далее по центральному волокну от тела нейрона (5) импульс входит в задние рога спинного мозга, где как бы «переключается» на другой нейрон (6). Отростки этого нейрона направляются к передним рогам (7). В передних рогах импульс переключается на двигательные нейроны (8), ответственные за работу мышц руки. Отростки двигательных нейронов (9) выходят из спинного мозга, проходят через межпозвоночное отверстие и в составе нерва направляются к мышцам руки (10). Импульс «о горячем» заставляет мышцы сократиться, и рука отдергивается от горячего предмета. Таким образом, образовалось рефлекторное кольцо (дуга), которое обеспечило ответное действие на раздражитель. При этом головной мозг совершенно не участвовал в процессе. Человек отдернул руку, не задумываясь об этом.

В каждой рефлекторной дуге есть обязательные звенья: афферентное звено (рецепторный нейрон с периферическим и центральным отростками), вставочное звено (нейрон, связывающий афферентное звено с нейроном-исполнителем) и эфферентное звено (нейрон, передающий импульс непосредственному исполнителю – органу, мышце).

На основе такой дуги и построена рефлекторная функция спинного мозга. Рефлексы бывают врожденные (которые можно определить с самого рождения) и приобретенные (образуются в процессе жизни при обучении), замыкаются они на различных уровнях. Например, коленный рефлекс замыкается на уровне 3-4-го поясничных сегментов. Проверяя его, врач убеждается в сохранности всех элементов рефлекторной дуги, в том числе и сегментов спинного мозга.

Для врача имеет значение проверка рефлекторной функции спинного мозга. Это делается при каждом неврологическом осмотре. Чаще всего проверяются поверхностные рефлексы, которые вызываются прикосновением, штриховым раздражением, уколом кожи или слизистых оболочек, и глубокие, которые вызываются ударом неврологического молоточка. К поверхностным рефлексам, осуществляемым спинным мозгом, относят брюшные рефлексы (штриховое раздражение кожи живота в норме вызывает сокращение мышц живота на этой же стороне), подошвенный рефлекс (штриховое раздражение кожи наружного края подошвы по направлению от пятки к пальцам в норме вызывает сгибание пальцев стопы). К глубоким рефлексам относят сгибательно-локтевой, карпорадиальный, разгибательно-локтевой, коленный, ахиллов.

Проводниковая функция спинного мозга

Проводниковая функция спинного мозга заключается в передаче импульсов с периферии (от кожи, слизистых оболочек, внутренних органов) в центр (головной мозг) и наоборот. Проводники спинного мозга, составляющие его белое вещество, осуществляют передачу информации в восходящем и нисходящем направлении. В головной мозг подается импульс о воздействии извне, и у человека формируется определенное ощущение (например, Вы гладите кота, и у Вас возникает чувство чего-то мягкого и гладкого в руке). Без спинного мозга это невозможно. Доказательством этому служат случаи травм спинного мозга, когда связи между головным и спинным мозгом нарушаются (например, разрыв спинного мозга). Такие люди утрачивают чувствительность, прикосновения не формируют у них ощущения.

В головной мозг поступают импульсы не только о прикосновениях, но и о положении тела в пространстве, состоянии напряжения мышц, боли и так далее.

Нисходящие импульсы позволяют головному мозгу «руководить» телом. Таким образом, то, что задумал человек, осуществляется с помощью спинного мозга. Вы захотели догнать уезжающий автобус? Замысел немедленно реализуется – в движение приводятся нужные мышцы (причем Вы не задумываетесь, какие именно мышцы нужно сократить, а какие расслабить). Это осуществляет спинной мозг.

Конечно, реализация двигательных актов или формирование ощущения требуют сложной и хорошо скоординированной деятельности всех структур спинного мозга. На самом деле, нужно задействовать тысячи нейронов, чтобы получить результат.

Спинной мозг является очень важной анатомической структурой. Его нормальное функционирование обеспечивает всю жизнедеятельность человека. Он служит промежуточным звеном между головным мозгом и различными частями тела, передавая информацию в виде импульсов в обоих направлениях. Знание особенностей строения и функционирования спинного мозга необходимо для диагностики заболеваний нервной системы.

Видео на тему «Строение и функции спинного мозга»

Научно-познавательный фильм времен СССР на тему «Спинной мозг»


Кандидат медицинских наук Павел Мусиенко, Институт физиологии им. И. П. Павлова РАН (Санкт-Петербург).

Спинной мозг можно «научить» обслуживать двигательные функции, даже когда его связь с головным мозгом нарушена в результате травмы, и более того - заставить формировать новые связи «в обход» травмы. Для этого нужны электрохимические нейропротезы, стимуляция и тренировка.

Посредством введения химических веществ воздействуют на нейрональные рецепторы, вызывая определённые эффекты возбуждения или торможения нейронов спинного мозга ниже уровня повреждения.

При параличе можно электрическим током стимулировать сенсорные волокна спинного мозга и через них - спинальные нейроны (А). Благодаря электрической стимуляции (ЭС) животное с повреждением спинного мозга может ходить (Б).

Двигательные навыки при параличе можно тренировать с помощью специально сконструированной робототехнической системы. Робот при необходимости поддерживает и контролирует перемещения животного по трём направлениям (x, y, z) и вокруг вертикальной оси (φ

Мультисистемная нейрореабилитация (специфическая тренировка + электрохимическая стимуляция) восстанавливает произвольный контроль движений за счёт образования новых межнейронных связей в спинном мозге и в стволе головного мозга.

Для электрической стимуляции нескольких сегментов спинного мозга и многокомпонентной фармакологической стимуляции специфических нейрональных рецепторов на спинальных сетях могут быть созданы специальные нейропротезы - набор электродов и хемотродов.

Травмы спинного мозга редко сопровождаются полным анатомическим перерывом. Оставшиеся неповреждёнными нервные волокна могут способствовать функциональному восстановлению.

Традиционная нейрофизиологическая картина управления движением отводила спинному мозгу функции канала, по которому распространяются нервные импульсы, связывающие головной мозг с телом, и примитивного рефлекторного контроля. Однако данные, накопленные нейрофизиологами в последнее время, заставляют пересмотреть эту скромную роль. Новые технологии исследования позволили обнаружить в спинном мозге многочисленные сети его «собственных» нейронов, специализированных на выполнении сложнейших двигательных задач, таких как координированная ходьба, сохранение равновесия, контроль скорости и направления при движении.

Можно ли использовать эти нейронные системы спинного мозга для восстановления двигательных функций у людей, парализованных в результате спинальной травмы?

При травме спинного мозга пациент утрачивает двигательные функции потому, что нарушается или полностью разрывается связь между головным мозгом и телом: сигнал не проходит, и ниже места повреждения не происходит активации двигательных нейронов. Так, травма шейного отдела спинного мозга может привести к параличу и потере функций рук и ног, так называемой тетраплегии, а травма грудного отдела - к параплегии, обездвиживанию только нижних конечностей: как если бы подразделения некоей армии, сами по себе функциональные и боеспособные, оказались отрезаны от штаба и прекратили получать команды.

Но главное зло спинальной травмы в том, что любые устойчивые связи, соединяющие нейроны в стабильные функциональные сети, деградируют, если их не активировать снова и снова. С этим феноменом хорошо знакомы те, кто давно не катался на велосипеде или не играл на фортепьяно: многие двигательные навыки утрачиваются, если их не используют. Точно так же в отсутствие активирующих сигналов и тренировки начинают со временем распадаться специализированные на движении нейронные сети спинного мозга. Изменения становятся необратимыми: сеть «разучивается» двигаться.

Можно ли это предотвратить? Ответ, который даёт современная нейрофизиология, обнадёживает.

Нейроны взаимодействуют друг с другом последовательно, по цепочке, вырабатывая химические вещества - медиаторы различного типа. При этом в головном мозге сосредоточена бóльшая часть нейронов, использующих в качестве сигнального «языка» довольно хорошо изученные моноаминергические медиаторы: серотонин, норадреналин, допамин.

На нейронных сетях даже повреждённого спинного мозга остаются рецепторы, способные этот сигнал воспринимать. Следовательно, можно попытаться активировать спинальные сети с помощью соответствующих моноаминергических препаратов, вводя их в нервную ткань спинного мозга извне.

Это обстоятельство легло в основу экспериментов по химической стимуляции.

В 2008 году вместе с группой исследователей из Университета Цюриха (Швейцария) мы попытались активировать спинальные нейронные сети, отвечающие за движение, «сажая» на сохранные рецепторы спинальных нейронов вещества, соответствующие моноаминергическим медиаторам. Эти препараты должны были служить источником сигнала, активирующего нейронные сети спинного мозга и предотвращающего их деградацию. Результат эксперимента оказался положительным, более того, были найдены оптимальные сочетания моноаминергических лекарств для улучшения функции ходьбы и баланса. Работа опубликована в 2011 году в журнале «Neuroscience».

Спинной мозг отличает высокая системная нейрональная пластичность: его нейронные сети способны постепенно «запоминать» те задачи, которые им приходится выполнять регулярно. Регулярное воздействие на определённые сенсорные и моторные пути при двигательных тренировках улучшает работу этих нейронных путей и восстанавливает способности к выполнению тренируемых функций.

Но если нейронные сети спинного мозга можно тренировать, то нельзя ли их чему-нибудь «научить» - например, с помощью стимуляции повреждённого спинного мозга и двигательной тренировки добиться такой функциональной перестройки его нейронных сетей, которая бы с бóльшим или меньшим успехом контролировала двигательную активность самостоятельно, в отрыве от «главного штаба» - головного мозга?

Чтобы ответить на этот вопрос, мы попробовали сочетать химическую нейростимуляцию с электрической. Ещё в 2007 году совместные эксперименты российских и американских нейрофизиологов показали, что если на поверхность спинного мозга крысы поместить электроды, то электрическое поле вокруг активного электрода может возбуждать проводящие спинальные структуры. Поскольку в эксперименте использовались очень небольшие токи, в первую очередь активировались наиболее возбудимые ткани вблизи электрода: толстые проводящие волокна задних спинномозговых корешков, передающие сенсорную информацию от рецепторов тканей конечностей к нейронам спинного мозга. Такая электростимуляция позволяла активизировать двигательные функции у спинальных животных.

Комбинирование электростимуляции, химической стимуляции и двигательной тренировки дало прекрасный результат. При полном разрыве связей спинного мозга с головным «спящие» спинальные нейронные сети удавалось превратить в высоко функционально активные. Парализованным животным вводили нейрофармакологические препараты, их спинной мозг стимулировали в двух сегментах, и постоянно проводились тренировки функции ходьбы. В результате через несколько недель животные показывали движения, близкие к нормальным, и могли адаптироваться к изменению скорости и направления передвижения.

В первых экспериментах исследователи тренировали животных, используя беговую дорожку и биомеханическую систему, которая помогала животному держать тело на весу, но не позволяла двигаться вперёд. Недавно, в 2012 году, в журналах «Science» и «Nature Medicine» опубликованы результаты совместных исследований Университета Цюриха и Института физиологии им. И. П. Павлова РАН, в которых мы применили робототехнический подход.

Специальный робот даёт крысе возможность свободно передвигаться, при необходимости поддерживая и контролируя её перемещения по трём направлениям (x, y, z). Причём сила воздействия по различным осям может меняться в зависимости от экспериментальной задачи и собственных двигательных способностей животного. В робототехнической установке использованы мягкие эластичные приводы и спирали, которые устраняют инерционное влияние силовых воздействий на живой объект. Это даёт возможность применять установку в поведенческих опытах. Робот опробован на экспериментальной модели парализованной крысы с повреждениями противоположных половин спинного мозга на уровне разных спинномозговых сегментов. Связь между головным и спинным мозгом была полностью прервана, однако сохранялась возможность прорастания новых нервных волокон между левой и правой частями спинного мозга. (Данная модель имеет сходство с повреждениями спинного мозга у людей, которые чаще всего являются анатомически неполными.) Комбинация тренировки в робототехнической системе с многокомпонентной химической и электрической стимуляцией спинного мозга позволила таким животным ходить вперёд по прямой, переступать через препятствия и даже подниматься по лестнице. У крыс появились новые межнейронные связи в области повреждения спинного мозга и восстановился произвольный контроль движений.

Так родилась идея электрохимических нейропротезов для имплантации в спинной мозг и управления спинальными сетями. Через специальные каналы имплантата можно вводить лекарства, которые действуют на соответствующие рецепторы и имитируют модулирующий нервный сигнал, прерванный после травмы. Матрица электродов стимулирует сенсорные входы разных сегментов и через них активирует отдельные популяции нейронов, чтобы таким образом вызвать определённые движения.

Стандартный клинический подход лечения пациентов с тяжёлыми спинальными травмами направлен на предотвращение дальнейших вторичных повреждений нервной системы, соматических осложнений паралича, на психологическую помощь парализованным больным и обучение их использованию оставшихся функций. Восстановительная терапия утраченных моторных навыков при тяжёлых повреждениях спинного мозга не только возможна, но и необходима.

Экспериментальная работа над химическим нейропротезом пока не шагнула дальше лабораторных исследований над животными, но в 2011 году авторитетный медицинский журнал «The Lancet» дал яркую иллюстрацию того, на что способна стимулирующая терапия в отношении людей. Журнал опубликовал результаты клинико-экспериментальной работы с использованием электрической стимуляции спинного мозга. Нейрофизиологи и врачи из США и России показали, что регулярная тренировка определённых моторных навыков в сочетании с эпидуральной стимуляцией спинного мозга восстанавливала двигательные способности у пациента c полной моторной параплегией, то есть полной утратой контроля над движением. Лечение улучшило функции стояния и поддержания веса тела, элементы локомоторной активности и частичного произвольного контроля движений во время стимуляции.

В результате тренировки и стимуляции удалось не только активировать нейронные сети ниже уровня повреждения, но и в определённой степени восстановить связь между головным мозгом и спинальными моторными центрами - уже упомянутая нейропластичность спинного мозга сделала возможным образование новых нейронных связей, «обходящих» место травмы.

Экспериментальные и клинические исследования показывают высокую эффективность стимуляции спинного мозга и тренировки после тяжёлой вертеброспинальной травмы. Хотя уже получены успешные результаты стимуляции спинного мозга у пациентов с сильнейшим параличом, основная часть исследовательской работы ещё впереди. Кроме того, предстоит разработать спинальные имплантаты для электрохимической стимуляции и найти оптимальные алгоритмы их использования. На всё это сейчас направлены активные усилия ведущих лабораторий мира. Сотни самостоятельных и межлабораторных исследовательских проектов посвящены достижению этих целей. Остаётся надеяться, что в результате совместных усилий мировых научных центров в общепринятые клинические стандарты войдут более эффективные методы лечения парализованных больных.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...