Formula za logaritme sa različitim bazama. Definicija logaritma, osnovni logaritamski identitet

Logaritam broja b (b > 0) na osnovu a (a > 0, a ≠ 1)– eksponent na koji se broj a mora podići da bi se dobio b.

Logaritam od 10 od b može se zapisati kao dnevnik(b), a logaritam bazi e (prirodni logaritam) je ln(b).

Često se koristi pri rješavanju problema s logaritmima:

Svojstva logaritama

Postoje četiri glavna svojstva logaritama.

Neka je a > 0, a ≠ 1, x > 0 i y > 0.

Svojstvo 1. Logaritam proizvoda

Logaritam proizvoda jednak zbiru logaritama:

log a (x ⋅ y) = log a x + log a y

Svojstvo 2. Logaritam količnika

Logaritam količnika jednaka razlici logaritama:

log a (x / y) = log a x – log a y

Svojstvo 3. Logaritam stepena

Logaritam stepena jednak proizvodu stepena i logaritma:

Ako je osnova logaritma u stepenu, onda se primjenjuje druga formula:

Svojstvo 4. Logaritam korijena

Ovo svojstvo se može dobiti iz svojstva logaritma stepena, jer je n-ti korijen stepena jednak stepenu 1/n:

Formula za pretvaranje iz logaritma u jednoj bazi u logaritam u drugoj bazi

Ova formula se također često koristi pri rješavanju različitih zadataka na logaritmima:

poseban slučaj:

Poređenje logaritama (nejednakosti)

Neka imamo 2 funkcije f(x) i g(x) pod logaritmima sa istim bazama i između njih postoji znak nejednakosti:

Da biste ih uporedili, prvo morate pogledati bazu logaritma a:

  • Ako je a > 0, onda je f(x) > g(x) > 0
  • Ako je 0< a < 1, то 0 < f(x) < g(x)

Kako riješiti probleme s logaritmima: primjeri

Problemi sa logaritmima uključeni u Jedinstveni državni ispit iz matematike za 11. razred u zadatku 5 i zadatku 7, zadatke sa rješenjima možete pronaći na našoj web stranici u odgovarajućim odjeljcima. Također, zadaci sa logaritmima nalaze se u banci matematičkih zadataka. Sve primjere možete pronaći pretraživanjem stranice.

Šta je logaritam

Logaritmi su oduvijek smatrani teškom temom u školskim predmetima matematike. Postoji mnogo različitih definicija logaritma, ali iz nekog razloga većina udžbenika koristi najsloženije i neuspješnije od njih.

Logaritam ćemo definirati jednostavno i jasno. Da bismo to uradili, napravimo tabelu:

Dakle, imamo moći dvojke.

Logaritmi - svojstva, formule, kako riješiti

Ako uzmete broj iz donje linije, lako ćete pronaći stepen na koji ćete morati podići dva da biste dobili ovaj broj. Na primjer, da biste dobili 16, trebate podići dva na četvrti stepen. A da biste dobili 64, trebate podići dva na šesti stepen. To se vidi iz tabele.

A sada - zapravo, definicija logaritma:

baza a argumenta x je stepen na koji se broj a mora podići da bi se dobio broj x.

Oznaka: log a x = b, gdje je a baza, x je argument, b je ono čemu je logaritam zapravo jednak.

Na primjer, 2 3 = 8 ⇒log 2 8 = 3 (osnovni 2 logaritam od 8 je tri jer je 2 3 = 8). Sa istim uspjehom, log 2 64 = 6, budući da je 2 6 = 64.

Operacija pronalaženja logaritma broja prema datoj bazi se zove. Dakle, dodajmo novi red u našu tabelu:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Nažalost, nisu svi logaritmi izračunati tako lako. Na primjer, pokušajte pronaći log 2 5. Broj 5 nije u tabeli, ali logika nalaže da će logaritam ležati negdje u intervalu. Jer 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Takvi brojevi se nazivaju iracionalni: brojevi iza decimalnog zareza mogu se pisati beskonačno i nikada se ne ponavljaju. Ako se ispostavi da je logaritam iracionalan, bolje je ostaviti ga tako: log 2 5, log 3 8, log 5 100.

Važno je shvatiti da je logaritam izraz sa dvije varijable (osnovom i argumentom). U početku, mnogi ljudi brkaju gdje je osnova, a gdje argument. Da biste izbjegli dosadne nesporazume, samo pogledajte sliku:

Pred nama nije ništa drugo do definicija logaritma. Zapamtite: logaritam je stepen, u koji se baza mora ugraditi da bi se dobio argument. To je baza koja je podignuta na snagu - na slici je istaknuta crvenom bojom. Ispostavilo se da je baza uvijek na dnu! Svojim učenicima govorim ovo divno pravilo već na prvoj lekciji - i ne nastaje zabuna.

Kako brojati logaritme

Shvatili smo definiciju - preostaje samo da naučimo kako računati logaritme, tj. riješite se znaka "log". Za početak, napominjemo da iz definicije proizlaze dvije važne činjenice:

  1. Argument i baza uvijek moraju biti veći od nule. Ovo proizilazi iz definicije stepena racionalnim eksponentom, na koji se svodi definicija logaritma.
  2. Baza mora biti različita od jedinice, jer jedan u bilo kom stepenu i dalje ostaje jedan. Zbog toga je besmisleno pitanje „na koju snagu se mora podići da bi se dobilo dva“. Ne postoji takva diploma!

Takva ograničenja se nazivaju raspon prihvatljivih vrijednosti(ODZ). Ispada da ODZ logaritma izgleda ovako: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Imajte na umu da nema ograničenja za broj b (vrijednost logaritma). Na primjer, logaritam može biti negativan: log 2 0,5 = −1, jer 0,5 = 2 −1.

Međutim, sada razmatramo samo numeričke izraze, gdje nije potrebno znati VA logaritma. Autori problema su već uzeli u obzir sva ograničenja. Ali kada logaritamske jednačine i nejednakosti uđu u igru, DL zahtjevi će postati obavezni. Uostalom, osnova i argument mogu sadržavati vrlo jake konstrukcije koje nužno ne odgovaraju gornjim ograničenjima.

Pogledajmo sada opću šemu za izračunavanje logaritama. Sastoji se od tri koraka:

  1. Izrazite bazu a i argument x kao stepen sa minimalnom mogućom bazom većom od jedan. Usput je bolje da se riješite decimala;
  2. Riješite jednačinu za varijablu b: x = a b ;
  3. Rezultirajući broj b će biti odgovor.

To je sve! Ako se pokaže da je logaritam iracionalan, to će biti vidljivo već u prvom koraku. Zahtjev da baza bude veća od jedan je vrlo važan: to smanjuje vjerovatnoću greške i uvelike pojednostavljuje proračune. Isto je i s decimalnim razlomcima: ako ih odmah pretvorite u obične, bit će mnogo manje grešaka.

Pogledajmo kako ova shema funkcionira na konkretnim primjerima:

Zadatak. Izračunajte logaritam: log 5 25

  1. Zamislimo bazu i argument kao stepen petice: 5 = 5 1 ; 25 = 5 2 ;
  2. Kreirajmo i riješimo jednačinu:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Dobili smo odgovor: 2.

Zadatak. Izračunaj logaritam:

Zadatak. Izračunajte logaritam: log 4 64

  1. Zamislimo bazu i argument kao stepen dvojke: 4 = 2 2 ; 64 = 2 6 ;
  2. Kreirajmo i riješimo jednačinu:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Dobili smo odgovor: 3.

Zadatak. Izračunajte logaritam: log 16 1

  1. Zamislimo bazu i argument kao stepen dvojke: 16 = 2 4 ; 1 = 2 0 ;
  2. Kreirajmo i riješimo jednačinu:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Dobili smo odgovor: 0.

Zadatak. Izračunajte logaritam: log 7 14

  1. Zamislimo bazu i argument kao stepen od sedam: 7 = 7 1 ; 14 se ne može predstaviti kao stepen sedam, jer 7 1< 14 < 7 2 ;
  2. Iz prethodnog stava proizilazi da se logaritam ne računa;
  3. Odgovor je bez promjene: dnevnik 7 14.

Mala napomena o posljednjem primjeru. Kako možete biti sigurni da broj nije tačan stepen drugog broja? Vrlo je jednostavno - samo ga uračunajte u osnovne faktore. Ako ekspanzija ima najmanje dva različita faktora, broj nije točna snaga.

Zadatak. Saznajte da li su brojevi tačni potenci: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - tačan stepen, jer postoji samo jedan množitelj;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nije tačna snaga, jer postoje dva faktora: 3 i 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - tačan stepen;
35 = 7 · 5 - opet nije tačna snaga;
14 = 7 · 2 - opet nije tačan stepen;

Imajte na umu da su sami prosti brojevi uvijek tačni potenci sami za sebe.

Decimalni logaritam

Neki logaritmi su toliko uobičajeni da imaju poseban naziv i simbol.

argumenta x je logaritam bazi 10, tj. Potencija na koju se broj 10 mora podići da bi se dobio broj x. Oznaka: lg x.

Na primjer, log 10 = 1; LG 100 = 2; lg 1000 = 3 - itd.

Od sada, kada se u udžbeniku pojavi fraza poput „Pronađi lg 0,01“, znajte da ovo nije greška u kucanju. Ovo je decimalni logaritam. Međutim, ako niste upoznati s ovom notacijom, uvijek je možete prepisati:
log x = log 10 x

Sve što vrijedi za obične logaritme vrijedi i za decimalne logaritme.

Prirodni logaritam

Postoji još jedan logaritam koji ima svoju oznaku. Na neki način, to je čak i važnije od decimalnog. Govorimo o prirodnom logaritmu.

argumenta x je logaritam bazi e, tj. stepen na koji se broj e mora podići da bi se dobio broj x. Oznaka: ln x.

Mnogi će se pitati: koji je broj e? Ovo je iracionalan broj, njegova tačna vrijednost se ne može pronaći i zapisati. Navest ću samo prve brojke:
e = 2,718281828459…

Nećemo ulaziti u detalje koji je to broj i zašto je potreban. Samo zapamtite da je e baza prirodnog logaritma:
ln x = log e x

Tako je ln e = 1; ln e 2 = 2; ln e 16 = 16 - itd. S druge strane, ln 2 je iracionalan broj. Općenito, prirodni logaritam bilo kojeg racionalnog broja je iracionalan. Osim, naravno, jednog: ln 1 = 0.

Za prirodne logaritme vrijede sva pravila koja vrijede za obične logaritme.

Vidi također:

Logaritam. Svojstva logaritma (snaga logaritma).

Kako predstaviti broj kao logaritam?

Koristimo definiciju logaritma.

Logaritam je eksponent na koji se baza mora podići da bi se dobio broj ispod predznaka logaritma.

Dakle, da biste određeni broj c predstavili kao logaritam prema bazi a, potrebno je potenciranje sa istom osnovom kao i osnova logaritma staviti pod znak logaritma, a ovaj broj c napisati kao eksponent:

Apsolutno svaki broj se može predstaviti kao logaritam - pozitivan, negativan, cijeli, razlomak, racionalan, iracionalan:

Kako ne biste pobrkali a i c u stresnim uvjetima testa ili ispita, možete koristiti sljedeće pravilo pamćenja:

ono što je dole ide dole, ono što je gore ide gore.

Na primjer, trebate predstaviti broj 2 kao logaritam bazi 3.

Imamo dva broja - 2 i 3. Ovi brojevi su baza i eksponent, koje ćemo zapisati pod znakom logaritma. Ostaje da odredimo koji od ovih brojeva treba zapisati, na osnovu stepena, a koji - nagore, na eksponent.

Osnova 3 u zapisu logaritma je na dnu, što znači da kada predstavljamo dva kao logaritam bazi 3, također ćemo zapisati 3 na bazu.

2 je veće od tri. A u notaciji stepena dva pišemo iznad tri, odnosno kao eksponent:

Logaritmi. Prvi nivo.

Logaritmi

Logaritam pozitivan broj b na osnovu a, Gdje a > 0, a ≠ 1, naziva se eksponent na koji se broj mora podići a, Za dobijanje b.

Definicija logaritma može se ukratko napisati ovako:

Ova jednakost važi za b > 0, a > 0, a ≠ 1. Obično se zove logaritamski identitet.
Akcija pronalaženja logaritma broja se zove logaritmom.

Svojstva logaritama:

Logaritam proizvoda:

Logaritam količnika:

Zamjena baze logaritma:

Logaritam stepena:

Logaritam korijena:

Logaritam sa bazom stepena:





Decimalni i prirodni logaritmi.

Decimalni logaritam brojevi pozivaju logaritam ovog broja na bazu 10 i pišu   lg b
Prirodni logaritam brojevi se nazivaju logaritam tog broja prema bazi e, Gdje e- iracionalan broj približno jednak 2,7. U isto vrijeme pišu ln b.

Ostale napomene o algebri i geometriji

Osnovna svojstva logaritama

Osnovna svojstva logaritama

Logaritmi, kao i svi brojevi, mogu se sabirati, oduzimati i transformirati na sve načine. Ali pošto logaritmi nisu baš obični brojevi, ovdje postoje pravila koja se nazivaju glavna svojstva.

Svakako morate znati ova pravila - bez njih se ne može riješiti nijedan ozbiljan logaritamski problem. Osim toga, vrlo ih je malo - sve možete naučiti u jednom danu. Pa počnimo.

Sabiranje i oduzimanje logaritama

Razmotrimo dva logaritma sa istim bazama: log a x i log a y. Tada se mogu sabirati i oduzimati i:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Dakle, zbir logaritama je jednak logaritmu proizvoda, a razlika je jednaka logaritmu količnika. Imajte na umu: ključna stvar je ovdje identične osnove. Ako su razlozi drugačiji, ova pravila ne funkcionišu!

Ove formule će vam pomoći da izračunate logaritamski izraz čak i kada se njegovi pojedinačni dijelovi ne uzimaju u obzir (pogledajte lekciju “Šta je logaritam”). Pogledajte primjere i pogledajte:

Dnevnik 6 4 + log 6 9.

Pošto logaritmi imaju iste baze, koristimo formulu sume:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Zadatak. Pronađite vrijednost izraza: log 2 48 − log 2 3.

Osnove su iste, koristimo formulu razlike:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Zadatak. Pronađite vrijednost izraza: log 3 135 − log 3 5.

Opet su baze iste, tako da imamo:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Kao što vidite, originalni izrazi su sastavljeni od „loših“ logaritama, koji se ne računaju zasebno. Ali nakon transformacija dobijaju se sasvim normalni brojevi. Mnogi testovi su zasnovani na ovoj činjenici. Da, izrazi poput testa se nude u potpunosti (ponekad i bez ikakvih promjena) na Jedinstvenom državnom ispitu.

Izdvajanje eksponenta iz logaritma

Sada da malo zakomplikujemo zadatak. Šta ako je osnova ili argument logaritma potencija? Tada se eksponent ovog stepena može izvaditi iz predznaka logaritma prema sljedećim pravilima:

Lako je vidjeti da posljednje pravilo slijedi prva dva. Ali ipak je bolje zapamtiti to - u nekim slučajevima to će značajno smanjiti količinu izračuna.

Naravno, sva ova pravila imaju smisla ako se poštuje ODZ logaritma: a > 0, a ≠ 1, x > 0. I još nešto: naučite primjenjivati ​​sve formule ne samo s lijeva na desno, već i obrnuto , tj. Možete unijeti brojeve prije znaka logaritma u sam logaritam.

Kako riješiti logaritme

To je ono što se najčešće traži.

Zadatak. Pronađite vrijednost izraza: log 7 49 6 .

Oslobodimo se stepena u argumentu koristeći prvu formulu:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Zadatak. Pronađite značenje izraza:

Imajte na umu da nazivnik sadrži logaritam, čija su osnova i argument tačni potenci: 16 = 2 4 ; 49 = 7 2. Imamo:

Mislim da posljednji primjer zahtijeva pojašnjenje. Gdje su nestali logaritmi? Do poslednjeg trenutka radimo samo sa imeniocem. Osnovu i argument logaritma koji tu stoji predstavili smo u obliku stepena i iznijeli eksponente - dobili smo razlomak od tri sprata.

Pogledajmo sada glavni razlomak. Brojilac i imenilac sadrže isti broj: log 2 7. Pošto je log 2 7 ≠ 0, možemo smanjiti razlomak - 2/4 će ostati u nazivniku. Prema pravilima aritmetike, četvorka se može prenijeti u brojilac, što je i učinjeno. Rezultat je bio odgovor: 2.

Prelazak na novu osnovu

Govoreći o pravilima za sabiranje i oduzimanje logaritama, posebno sam naglasio da oni rade samo sa istim osnovama. Šta ako su razlozi drugačiji? Šta ako nisu tačne snage istog broja?

Formule za prelazak na novu podlogu dolaze u pomoć. Formulirajmo ih u obliku teoreme:

Neka je dat logaritam log a x. Tada je za bilo koji broj c takav da je c > 0 i c ≠ 1 tačna jednakost:

Konkretno, ako postavimo c = x, dobijamo:

Iz druge formule proizilazi da se baza i argument logaritma mogu zamijeniti, ali se u ovom slučaju cijeli izraz „obrće“, tj. logaritam se pojavljuje u nazivniku.

Ove formule se rijetko nalaze u običnim numeričkim izrazima. Koliko su zgodne moguće je procijeniti samo pri rješavanju logaritamskih jednačina i nejednačina.

Međutim, postoje problemi koji se nikako ne mogu riješiti osim preseljenjem u novu osnovu. Pogledajmo par ovih:

Zadatak. Pronađite vrijednost izraza: log 5 16 log 2 25.

Imajte na umu da argumenti oba logaritma sadrže tačne potencije. Izvadimo indikatore: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Sada "obrnimo" drugi logaritam:

Kako se proizvod ne mijenja pri preraspodjelu faktora, mirno smo pomnožili četiri i dva, a zatim se pozabavili logaritmima.

Zadatak. Pronađite vrijednost izraza: log 9 100 lg 3.

Osnova i argument prvog logaritma su tačni potenci. Zapišimo ovo i riješimo se indikatora:

Sada se riješimo decimalnog logaritma pomicanjem na novu bazu:

Osnovni logaritamski identitet

Često je u procesu rješavanja potrebno predstaviti broj kao logaritam na datu bazu.

U ovom slučaju pomoći će nam sljedeće formule:

U prvom slučaju, broj n postaje eksponent u argumentu. Broj n može biti apsolutno bilo koji, jer je samo logaritamska vrijednost.

Druga formula je zapravo parafrazirana definicija. Tako se to zove: .

U stvari, šta se dešava ako se broj b podigne na takav stepen da broj b na ovaj stepen daje broj a? Tako je: rezultat je isti broj a. Pažljivo pročitajte ovaj odlomak ponovo - mnogi ljudi zaglave u njemu.

Kao i formule za prelazak na novu bazu, osnovni logaritamski identitet je ponekad jedino moguće rješenje.

Zadatak. Pronađite značenje izraza:

Imajte na umu da je log 25 64 = log 5 8 - jednostavno uzet kvadrat iz baze i argumenta logaritma. Uzimajući u obzir pravila za množenje potencija sa istom osnovom, dobijamo:

Ako neko ne zna, ovo je bio pravi zadatak sa Jedinstvenog državnog ispita :)

Logaritamska jedinica i logaritamska nula

U zaključku ću dati dva identiteta koja se teško mogu nazvati svojstvima – radije su to posljedice definicije logaritma. Stalno se pojavljuju u problemima i, iznenađujuće, stvaraju probleme čak i „naprednim“ učenicima.

  1. log a a = 1 je. Zapamtite jednom za svagda: logaritam bilo koje baze a te baze jednak je jedan.
  2. log a 1 = 0 je. Baza a može biti bilo koja, ali ako argument sadrži jedan, logaritam je jednak nuli! Zato što je 0 = 1 direktna posljedica definicije.

To je sva imovina. Obavezno vježbajte u njihovoj primjeni! Preuzmite cheat sheet na početku lekcije, odštampajte ga i riješite probleme.

\(a^(b)=c\) \(\Strelica ulevo\) \(\log_(a)(c)=b\)

Hajde da to jednostavnije objasnimo. Na primjer, \(\log_(2)(8)\) je jednako potenciji na koju se \(2\) mora podići da bi se dobilo \(8\). Iz ovoga je jasno da je \(\log_(2)(8)=3\).

primjeri:

\(\log_(5)(25)=2\)

jer \(5^(2)=25\)

\(\log_(3)(81)=4\)

jer \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

jer \(2^(-5)=\)\(\frac(1)(32)\)

Argument i baza logaritma

Svaki logaritam ima sljedeću "anatomiju":

Argument logaritma se obično piše na njegovom nivou, a baza se upisuje u indeksu bliže znaku logaritma. A ovaj unos glasi ovako: "logaritam od dvadeset pet do osnove pet."

Kako izračunati logaritam?

Da biste izračunali logaritam, morate odgovoriti na pitanje: na koji stepen treba podići bazu da biste dobili argument?

Na primjer, izračunajte logaritam: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) Na koji stepen treba podići \(4\) da bi se dobilo \(16\)? Očigledno drugi. Zbog toga:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) Na koji stepen treba podići \(\sqrt(5)\) da bi se dobilo \(1\)? Koja moć čini bilo kog broja jedan? Nula, naravno!

\(\log_(\sqrt(5))(1)=0\)

d) Na koji stepen treba podići \(\sqrt(7)\) da bi se dobio \(\sqrt(7)\)? Prvo, bilo koji broj na prvi stepen jednak je samom sebi.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) Na koji stepen treba podići \(3\) da bi se dobio \(\sqrt(3)\)? Odatle znamo da je to razlomak, što znači da je kvadratni korijen potencija \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Primjer : Izračunajte logaritam \(\log_(4\sqrt(2))(8)\)

Rješenje :

\(\log_(4\sqrt(2))(8)=x\)

Trebamo pronaći vrijednost logaritma, označimo ga sa x. Sada koristimo definiciju logaritma:
\(\log_(a)(c)=b\) \(\Strelica ulevo\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Šta povezuje \(4\sqrt(2)\) i \(8\)? Dva, jer se oba broja mogu predstaviti dvojkama:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Na lijevoj strani koristimo svojstva stepena: \(a^(m)\cdot a^(n)=a^(m+n)\) i \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Osnove su jednake, prelazimo na jednakost indikatora

\(\frac(5x)(2)\) \(=3\)


Pomnožite obje strane jednadžbe sa \(\frac(2)(5)\)


Dobiveni korijen je vrijednost logaritma

Odgovori : \(\log_(4\sqrt(2))(8)=1,2\)

Zašto je izmišljen logaritam?

Da bismo ovo razumjeli, riješimo jednačinu: \(3^(x)=9\). Samo uparite \(x\) da bi jednakost funkcionirala. Naravno, \(x=2\).

Sada riješite jednačinu: \(3^(x)=8\). Koliko je x jednako? To je poenta.

Oni najpametniji će reći: "X je malo manje od dva." Kako tačno napisati ovaj broj? Da bi se odgovorilo na ovo pitanje, izmišljen je logaritam. Zahvaljujući njemu, odgovor se ovdje može napisati kao \(x=\log_(3)(8)\).

Želim da naglasim da \(\log_(3)(8)\), kao svaki logaritam je samo broj. Da, izgleda neobično, ali je kratak. Jer ako bismo to htjeli zapisati kao decimalu, to bi izgledalo ovako: \(1.892789260714.....\)

Primjer : Riješite jednačinu \(4^(5x-4)=10\)

Rješenje :

\(4^(5x-4)=10\)

\(4^(5x-4)\) i \(10\) se ne mogu dovesti u istu bazu. To znači da ne možete bez logaritma.

Koristimo definiciju logaritma:
\(a^(b)=c\) \(\Strelica ulevo\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Okrenimo jednačinu tako da X bude na lijevoj strani

\(5x-4=\log_(4)(10)\)

Pred nama. Pomaknimo \(4\) udesno.

I ne plašite se logaritma, tretirajte ga kao običan broj.

\(5x=\log_(4)(10)+4\)

Podijelite jednačinu sa 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Ovo je naš korijen. Da, izgleda neobično, ali ne biraju odgovor.

Odgovori : \(\frac(\log_(4)(10)+4)(5)\)

Decimalni i prirodni logaritmi

Kao što je navedeno u definiciji logaritma, njegova baza može biti bilo koji pozitivan broj osim jednog \((a>0, a\neq1)\). A među svim mogućim bazama, postoje dvije koje se tako često javljaju da je izmišljen poseban kratki zapis za logaritme s njima:

Prirodni logaritam: logaritam čija je osnova Ojlerov broj \(e\) (jednak približno \(2,7182818…\)), a logaritam je zapisan kao \(\ln(a)\).

To je, \(\ln(a)\) je isto što i \(\log_(e)(a)\)

Decimalni logaritam: Logaritam čija je baza 10 piše se \(\lg(a)\).

To je, \(\lg(a)\) je isto što i \(\log_(10)(a)\), gdje je \(a\) neki broj.

Osnovni logaritamski identitet

Logaritmi imaju mnoga svojstva. Jedan od njih se zove “Osnovni logaritamski identitet” i izgleda ovako:

\(a^(\log_(a)(c))=c\)

Ovo svojstvo slijedi direktno iz definicije. Pogledajmo kako je tačno nastala ova formula.

Prisjetimo se kratke notacije definicije logaritma:

ako je \(a^(b)=c\), onda \(\log_(a)(c)=b\)

To jest, \(b\) je isto što i \(\log_(a)(c)\). Tada možemo napisati \(\log_(a)(c)\) umjesto \(b\) u formuli \(a^(b)=c\). Ispostavilo se \(a^(\log_(a)(c))=c\) - glavni logaritamski identitet.

Možete pronaći i druga svojstva logaritama. Uz njihovu pomoć možete pojednostaviti i izračunati vrijednosti izraza logaritmima, koje je teško izravno izračunati.

Primjer : Pronađite vrijednost izraza \(36^(\log_(6)(5))\)

Rješenje :

Odgovori : \(25\)

Kako napisati broj kao logaritam?

Kao što je gore spomenuto, svaki logaritam je samo broj. I obrnuto: bilo koji broj se može napisati kao logaritam. Na primjer, znamo da je \(\log_(2)(4)\) jednako dva. Tada umjesto dva možete napisati \(\log_(2)(4)\).

Ali \(\log_(3)(9)\) je također jednako \(2\), što znači da možemo napisati i \(2=\log_(3)(9)\) . Isto tako sa \(\log_(5)(25)\), i sa \(\log_(9)(81)\), itd. Odnosno, ispostavilo se

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Dakle, ako trebamo, možemo napisati dva kao logaritam sa bilo kojom bazom bilo gdje (bilo u jednadžbi, u izrazu ili u nejednadžbi) - jednostavno zapišemo bazu na kvadrat kao argument.

Isto je i sa trojkom – može se napisati kao \(\log_(2)(8)\), ili kao \(\log_(3)(27)\), ili kao \(\log_(4)( 64) \)... Ovdje upisujemo bazu u kocki kao argument:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

I sa četiri:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

I sa minus jedan:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

I sa jednom trećinom:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Bilo koji broj \(a\) može se predstaviti kao logaritam sa bazom \(b\): \(a=\log_(b)(b^(a))\)

Primjer : Pronađite značenje izraza \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Rješenje :

Odgovori : \(1\)


Fokus ovog članka je logaritam. Ovdje ćemo dati definiciju logaritma, pokazati prihvaćenu notaciju, dati primjere logaritama i govoriti o prirodnim i decimalnim logaritmima. Nakon toga ćemo razmotriti osnovni logaritamski identitet.

Navigacija po stranici.

Definicija logaritma

Koncept logaritma nastaje kada se problem rješava u određenom inverznom smislu, kada treba pronaći eksponent iz poznate vrijednosti eksponenta i poznate baze.

Ali dosta predgovora, vrijeme je da odgovorimo na pitanje „šta je logaritam“? Dajemo odgovarajuću definiciju.

Definicija.

Logaritam od b prema bazi a, gdje je a>0, a≠1 i b>0 eksponent na koji trebate podići broj a da dobijete b kao rezultat.

U ovoj fazi, napominjemo da izgovorena riječ “logaritam” treba odmah pokrenuti dva dodatna pitanja: “koji broj” i “na osnovu čega”. Drugim riječima, jednostavno ne postoji logaritam, već samo logaritam broja prema nekoj bazi.

Uđimo odmah logaritamski zapis: logaritam broja b prema bazi a obično se označava kao log a b. Logaritam broja b na osnovu e i logaritam na osnovu 10 imaju svoje posebne oznake lnb i logb, odnosno ne pišu log e b, već lnb, i ne log 10 b, već lgb.

Sada možemo dati: .
I zapisi nema smisla, jer u prvom od njih je negativan broj pod predznakom logaritma, u drugom je negativan broj u osnovi, a u trećem je negativan broj ispod predznaka logaritma i jedinica u baza.

Hajde sada da pričamo o tome pravila za čitanje logaritama. Log a b se čita kao "logaritam od b prema bazi a". Na primjer, log 2 3 je logaritam od tri prema osnovici 2, a logaritam je dvije tačke dvije trećine na osnovni kvadratni korijen od pet. Poziva se logaritam bazi e prirodni logaritam, a oznaka lnb glasi "prirodni logaritam od b". Na primjer, ln7 je prirodni logaritam od sedam, a mi ćemo ga čitati kao prirodni logaritam broja pi. Logaritam sa bazom 10 takođe ima poseban naziv - decimalni logaritam, a lgb se čita kao "decimalni logaritam od b". Na primjer, lg1 je decimalni logaritam od jedan, a lg2.75 je decimalni logaritam dvije zareze sedam pet stotinki.

Vrijedi se posebno zadržati na uslovima a>0, a≠1 i b>0, pod kojima je data definicija logaritma. Hajde da objasnimo odakle dolaze ova ograničenja. Jednakost oblika zvanog , koja direktno slijedi iz gore navedene definicije logaritma, pomoći će nam u tome.

Počnimo sa a≠1. Pošto je jedan na bilo koji stepen jednak jedan, jednakost može biti tačna samo kada je b=1, ali log 1 1 može biti bilo koji realan broj. Da bi se izbjegla ova dvosmislenost, pretpostavlja se a≠1.

Hajde da opravdamo svrsishodnost uslova a>0. Sa a=0, po definiciji logaritma, imali bismo jednakost, što je moguće samo sa b=0. Ali onda log 0 0 može biti bilo koji realni broj različit od nule, budući da je nula prema bilo kojoj stepenu različitoj od nule nula. Uslov a≠0 nam omogućava da izbjegnemo ovu dvosmislenost. I kada a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Konačno, uvjet b>0 slijedi iz nejednakosti a>0, budući da je , a vrijednost snage s pozitivnom bazom a uvijek je pozitivna.

Da zaključimo ovu stvar, recimo da navedena definicija logaritma omogućava da odmah naznačite vrijednost logaritma kada je broj ispod znaka logaritma određena snaga baze. Zaista, definicija logaritma nam omogućava da kažemo da ako je b=a p, onda je logaritam broja b na bazi a jednak p. To jest, log jednakosti a a p =p je tačan. Na primjer, znamo da je 2 3 =8, a zatim log 2 8=3. O tome ćemo više govoriti u članku.

(od grčkog λόγος - "reč", "odnos" i ἀριθμός - "broj") brojevi b na osnovu a(log α b) se zove takav broj c, And b= a c, odnosno zapisi log α b=c I b=ac su ekvivalentni. Logaritam ima smisla ako je a > 0, a ≠ 1, b > 0.

Drugim riječima logaritam brojevi b na osnovu A formulisan kao eksponent na koji se broj mora podići a da dobijem broj b(logaritam postoji samo za pozitivne brojeve).

Iz ove formulacije slijedi da je proračun x= log α b, je ekvivalentno rješavanju jednačine a x =b.

Na primjer:

log 2 8 = 3 jer je 8 = 2 3 .

Naglasimo da navedena formulacija logaritma omogućava da se odmah odredi vrijednost logaritma, kada broj pod predznakom logaritma djeluje kao određena snaga baze. Zaista, formulacija logaritma omogućava da se opravda ako b=a c, zatim logaritam broja b na osnovu a jednaki With. Takođe je jasno da je tema logaritma usko povezana sa temom moći broja.

Izračunavanje logaritma se zove logaritam. Logaritam je matematička operacija uzimanja logaritma. Kada se uzimaju logaritmi, proizvodi faktora se pretvaraju u zbir članova.

Potenciranje je inverzna matematička operacija logaritma. Tokom potenciranja, data baza se podiže do stepena ekspresije nad kojim se vrši potenciranje. U ovom slučaju, sume termina se pretvaraju u proizvod faktora.

Vrlo često se koriste realni logaritmi sa bazama 2 (binarni), Eulerovim brojem e ≈ 2,718 (prirodni logaritam) i 10 (decimalno).

U ovoj fazi je preporučljivo razmotriti logaritamski uzorci dnevnik 7 2 , ln 5, lg0.0001.

A unosi lg(-3), log -3 3.2, log -1 -4.3 nemaju smisla, jer je u prvom od njih pod znakom logaritma stavljen negativan broj, u drugom je negativan broj u osnovi, au trećem je negativan broj ispod znaka logaritma i jedinica u osnovi.

Uslovi za određivanje logaritma.

Vrijedi posebno razmotriti uslove a > 0, a ≠ 1, b > 0. pod kojima dobijamo definicija logaritma. Razmotrimo zašto su uvedena ova ograničenja. Jednakost oblika x = log α će nam pomoći u tome b, nazvan osnovnim logaritamskim identitetom, što direktno proizilazi iz gore date definicije logaritma.

Uzmimo uslov a≠1. Pošto je jedan na bilo koji stepen jednak jedan, onda je jednakost x=log α b može postojati samo kada b=1, ali log 1 1 će biti bilo koji realan broj. Da bismo otklonili ovu dvosmislenost, uzimamo a≠1.

Hajde da dokažemo neophodnost uslova a>0. At a=0 prema formulaciji logaritma može postojati samo kada b=0. I shodno tome onda log 0 0 može biti bilo koji realni broj različit od nule, pošto je nula na bilo koji stepen različit od nule nula. Ova dvosmislenost se može eliminisati uslovom a≠0. I kada a<0 morali bismo odbaciti analizu racionalnih i iracionalnih vrijednosti logaritma, jer je stepen s racionalnim i iracionalnim eksponentom definiran samo za nenegativne baze. Iz tog razloga je uvjet propisan a>0.

I poslednji uslov b>0 proizlazi iz nejednakosti a>0, budući da je x=log α b, i vrijednost stepena sa pozitivnom bazom a uvek pozitivno.

Osobine logaritama.

Logaritmi karakteriše karakteristično karakteristike, što je dovelo do njihove široke upotrebe kako bi se značajno olakšala mukotrpna izračunavanja. Prilikom prelaska „u svijet logaritama“, množenje se pretvara u mnogo lakše sabiranje, dijeljenje se pretvara u oduzimanje, a stepenovanje i vađenje korijena se pretvaraju u množenje i dijeljenje eksponentom.

Formulaciju logaritama i tablicu njihovih vrijednosti (za trigonometrijske funkcije) prvi je objavio 1614. škotski matematičar John Napier. Logaritamske tablice, uvećane i detaljnije od strane drugih naučnika, bile su široko korišćene u naučnim i inženjerskim proračunima i ostale su relevantne sve do upotrebe elektronskih kalkulatora i računara.



Slični članci

  • Šta je fizionomija i šta proučava?

    Individualnost svake osobe je skup izraženih osobina ličnosti koje dominiraju nad ostalima, a koje su znatno slabije razvijene. Upravo ovaj set stvara našu posebnost, koju svi obožavaju. Na našu sreću, vodeće karakteristike...

  • Najbolji načini da predvidite svoju sudbinu za budućnost

    Oblik ruke. Određene osobine karaktera mogu se prepoznati po obliku ruke. Dužina dlana se mjeri od ručnog zgloba do dna prstiju. Osnovna tumačenja: Zemlja - široki, četvrtasti dlanovi i prsti, debela ili hrapava koža, rumene boje,...

  • Glavni vjerski centar hinduizma

    HINDUIZAM, zbirni naziv velike grupe religija koja se razvila na teritoriji Indije i koju ispoveda najveći deo njenog stanovništva (na početku 21. veka ispovedalo ga je preko 80% stanovništva), broj čiji sljedbenici u svijetu premašuju milijardu ljudi...

  • Religijski centri hinduizma

    1.1 Pojava hinduizma Proces sinteze nekoliko glavnih etnokulturnih komponenti, kao rezultat kojeg je nastala bogata kultura moderne Indije, započeo je prije tri hiljade godina; Religija starih ljudi postala je sistemski faktor...

  • Ove neverovatne školjke

    Potcijenjeni puževi Puževi zaslužuju mnogo više pažnje javnosti. Iako su po pravilu izuzetno spori, nikako ih ne treba nazivati ​​dosadnim stvorenjima. Ima sjajnih i prozirnih puževa, poneki...

  • Od čega je Bruce Lee umro? Misterija smrti Brucea Leeja. Bruce Lee: priča o poznatoj smrti S kim se Bruce Lee borio?

    Odvukao sam cijelu porodicu na groblje. Da, da, ovdje, na groblju Lake View, moj idol iz djetinjstva i jedinstveni superman, Bruce Lee, sahranjen je, pored svog sina Brandona Leeja. Onda, ranih 90-ih, diveći se sposobnostima...