Jak rozwiązano pukanie. Sprowadzanie ułamków do wspólnego mianownika

Wielokrotność to liczba, która dzieli się przez daną liczbę bez reszty. Najmniejsza wspólna wielokrotność (LCM) grupy liczb to najmniejsza liczba, którą można podzielić przez każdą liczbę w grupie bez pozostawiania reszty. Aby znaleźć najmniejszą wspólną wielokrotność, należy znaleźć czynniki pierwsze danych liczb. LCM można również obliczyć przy użyciu szeregu innych metod, które mają zastosowanie do grup dwóch lub więcej liczb.

Kroki

Seria wielokrotności

    Spójrz na te liczby. Opisaną tutaj metodę najlepiej zastosować, gdy podano dwie liczby, z których każda jest mniejsza niż 10. Jeśli podano większe liczby, użyj innej metody.

    • Na przykład znajdź najmniejszą wspólną wielokrotność 5 i 8. Są to małe liczby, więc możesz zastosować tę metodę.
  1. Wielokrotność to liczba, która dzieli się przez daną liczbę bez reszty. Wielokrotności można znaleźć w tabliczce mnożenia.

    • Na przykład liczby będące wielokrotnościami 5 to: 5, 10, 15, 20, 25, 30, 35, 40.
  2. Zapisz ciąg liczb będący wielokrotnością pierwszej liczby. Zrób to pod wielokrotnościami pierwszej liczby, aby porównać dwa zestawy liczb.

    • Na przykład liczby będące wielokrotnościami 8 to: 8, 16, 24, 32, 40, 48, 56 i 64.
  3. Znajdź najmniejszą liczbę występującą w obu zbiorach wielokrotności. Aby znaleźć całkowitą liczbę, konieczne może być napisanie długich serii wielokrotności. Najmniejsza liczba występująca w obu zbiorach wielokrotności jest najmniejszą wspólną wielokrotnością.

    • Na przykład najmniejsza liczba występująca w szeregu wielokrotności 5 i 8 to liczba 40. Dlatego 40 jest najmniejszą wspólną wielokrotnością 5 i 8.

    Faktoryzacja pierwsza

    1. Spójrz na te liczby. Opisaną tutaj metodę najlepiej zastosować, gdy podano dwie liczby, z których każda jest większa niż 10. Jeśli podano mniejsze liczby, użyj innej metody.

      • Na przykład znajdź najmniejszą wspólną wielokrotność liczb 20 i 84. Każda z liczb jest większa niż 10, więc możesz zastosować tę metodę.
    2. Rozłóż pierwszą liczbę na czynniki pierwsze. Oznacza to, że musisz znaleźć takie liczby pierwsze, które po pomnożeniu dadzą daną liczbę. Po znalezieniu czynników pierwszych zapisz je jako równości.

      • Na przykład, 2 × 10 = 20 (\ Displaystyle (\ mathbf (2)) \ razy 10 = 20) I 2 × 5 = 10 (\ Displaystyle (\ mathbf (2)) \ razy (\ mathbf (5)) = 10). Zatem czynnikami pierwszymi liczby 20 są liczby 2, 2 i 5. Zapisz je jako wyrażenie: .
    3. Rozłóż drugą liczbę na czynniki pierwsze. Zrób to w taki sam sposób, jak rozłożyłeś pierwszą liczbę, czyli znajdź takie liczby pierwsze, które po pomnożeniu dadzą podaną liczbę.

      • Na przykład, 2 × 42 = 84 (\ Displaystyle (\ mathbf (2)) \ razy 42 = 84), 7 × 6 = 42 (\ Displaystyle (\ mathbf (7)) \ razy 6 = 42) I 3 × 2 = 6 (\ Displaystyle (\ mathbf (3)) \ razy (\ mathbf (2)) = 6). Zatem czynnikami pierwszymi liczby 84 są liczby 2, 7, 3 i 2. Zapisz je jako wyrażenie: .
    4. Zapisz czynniki wspólne obu liczb. Zapisz takie czynniki, jak operacja mnożenia. Podczas wpisywania każdego czynnika przekreśl go w obu wyrażeniach (wyrażeniach opisujących rozkład liczb na czynniki pierwsze).

      • Na przykład obie liczby mają wspólny współczynnik 2, więc napisz 2 × (\ Displaystyle 2 \ razy) i skreśl 2 w obu wyrażeniach.
      • To, co łączy obie liczby, to kolejny współczynnik 2, więc pisz 2 × 2 (\ Displaystyle 2 \ razy 2) i skreśl drugie 2 w obu wyrażeniach.
    5. Dodaj pozostałe czynniki do operacji mnożenia. Są to czynniki, które nie są przekreślone w obu wyrażeniach, czyli czynniki, które nie są wspólne dla obu liczb.

      • Na przykład w wyrażeniu 20 = 2 × 2 × 5 (\ Displaystyle 20 = 2 \ razy 2 \ razy 5) Obie dwójki (2) zostały przekreślone, ponieważ są to czynniki wspólne. Współczynnik 5 nie jest przekreślony, dlatego zapisz operację mnożenia w następujący sposób: 2 × 2 × 5 (\ Displaystyle 2 \ razy 2 \ razy 5)
      • W wyrazie 84 = 2 × 7 × 3 × 2 (\ Displaystyle 84 = 2 \ razy 7 \ razy 3 \ razy 2) obie dwójki (2) są również przekreślone. Współczynniki 7 i 3 nie są przekreślone, więc zapisz operację mnożenia w następujący sposób: 2 × 2 × 5 × 7 × 3 (\ Displaystyle 2 \ razy 2 \ razy 5 \ razy 7 \ razy 3).
    6. Oblicz najmniejszą wspólną wielokrotność. Aby to zrobić, pomnóż liczby w zapisanej operacji mnożenia.

      • Na przykład, 2 × 2 × 5 × 7 × 3 = 420 (\ Displaystyle 2 \ razy 2 \ razy 5 \ razy 7 \ razy 3 = 420). Zatem najmniejszą wspólną wielokrotnością 20 i 84 jest 420.

    Znalezienie wspólnych czynników

    1. Narysuj siatkę przypominającą grę w kółko i krzyżyk. Taka siatka składa się z dwóch równoległych linii, które przecinają się (pod kątem prostym) z dwoma innymi równoległymi liniami. Otrzymasz trzy wiersze i trzy kolumny (siatka wygląda bardzo podobnie do ikony #). Wpisz pierwszą liczbę w pierwszym wierszu i drugiej kolumnie. Wpisz drugą liczbę w pierwszym rzędzie i trzeciej kolumnie.

      • Na przykład znajdź najmniejszą wspólną wielokrotność liczb 18 i 30. Wpisz liczbę 18 w pierwszym rzędzie i drugiej kolumnie, a liczbę 30 w pierwszym rzędzie i trzeciej kolumnie.
    2. Znajdź dzielnik wspólny dla obu liczb. Zapisz to w pierwszym wierszu i pierwszej kolumnie. Lepiej jest szukać czynników pierwszych, ale nie jest to wymagane.

      • Na przykład 18 i 30 to liczby parzyste, więc ich wspólny dzielnik wynosi 2. Zatem wpisz 2 w pierwszym wierszu i pierwszej kolumnie.
    3. Podziel każdą liczbę przez pierwszy dzielnik. Zapisz każdy iloraz pod odpowiednią liczbą. Iloraz jest wynikiem dzielenia dwóch liczb.

      • Na przykład, 18 ÷ 2 = 9 (\ Displaystyle 18 \ div 2 = 9), więc wpisz 9 pod 18.
      • 30 ÷ 2 = 15 (\ Displaystyle 30 \ div 2 = 15), więc zapisz 15 poniżej 30.
    4. Znajdź dzielnik wspólny dla obu ilorazów. Jeżeli nie ma takiego dzielnika, pomiń kolejne dwa kroki. W przeciwnym razie wpisz dzielnik w drugim wierszu i pierwszej kolumnie.

      • Na przykład 9 i 15 są podzielne przez 3, więc wpisz 3 w drugim rzędzie i pierwszej kolumnie.
    5. Podziel każdy iloraz przez jego drugi dzielnik. Zapisz każdy wynik dzielenia pod odpowiednim ilorazem.

      • Na przykład, 9 ÷ 3 = 3 (\ Displaystyle 9 \ div 3 = 3), więc napisz 3 pod 9.
      • 15 ÷ 3 = 5 (\ Displaystyle 15 \ div 3 = 5), więc napisz 5 pod 15.
    6. Jeśli to konieczne, dodaj dodatkowe komórki do siatki. Powtarzaj opisane kroki, aż ilorazy będą miały wspólny dzielnik.

    7. Zakreśl liczby w pierwszej kolumnie i ostatnim rzędzie siatki. Następnie zapisz wybrane liczby w formie operacji mnożenia.

      • Na przykład liczby 2 i 3 znajdują się w pierwszej kolumnie, a liczby 3 i 5 w ostatnim wierszu, więc zapisz operację mnożenia w ten sposób: 2 × 3 × 3 × 5 (\ Displaystyle 2 \ razy 3 \ razy 3 \ razy 5).
    8. Znajdź wynik mnożenia liczb. Spowoduje to obliczenie najmniejszej wspólnej wielokrotności dwóch podanych liczb.

      • Na przykład, 2 × 3 × 3 × 5 = 90 (\ Displaystyle 2 \ razy 3 \ razy 3 \ razy 5 = 90). Zatem najmniejszą wspólną wielokrotnością 18 i 30 jest 90.

    Algorytm Euklidesa

    1. Zapamiętaj terminologię związaną z operacją dzielenia. Dzielna to liczba, która jest dzielona. Dzielnik to liczba, przez którą jest dzielona. Iloraz jest wynikiem dzielenia dwóch liczb. Reszta to liczba, która pozostaje po podzieleniu dwóch liczb.

      • Na przykład w wyrażeniu 15 ÷ 6 = 2 (\ Displaystyle 15 \ div 6 = 2) ost. 3:
        15 to dywidenda
        6 jest dzielnikiem
        2 jest ilorazem
        3 to reszta.

Wyrażenia i problemy matematyczne wymagają dużej wiedzy dodatkowej. NOC jest jednym z głównych, szczególnie często używanym w. Temat jest nauczany w szkole średniej i zrozumienie materiału nie jest szczególnie trudne; osoba zaznajomiona z potęgami i tabliczką mnożenia nie będzie miała trudności z identyfikacją niezbędnych liczb i odkryciem wynik.

Definicja

Wspólna wielokrotność to liczba, którą można całkowicie podzielić na dwie liczby jednocześnie (a i b). Najczęściej liczbę tę uzyskuje się poprzez pomnożenie pierwotnych liczb a i b. Liczba musi być podzielna przez obie liczby jednocześnie, bez odchyleń.

NOC to przyjęta do oznaczenia krótka nazwa, zebrana od pierwszych liter.

Sposoby uzyskania numeru

Metoda mnożenia liczb nie zawsze jest odpowiednia do znalezienia LCM; znacznie lepiej sprawdza się w przypadku prostych liczb jednocyfrowych lub dwucyfrowych. Zwyczajowo dzieli się na czynniki; im większa liczba, tym więcej będzie czynników.

Przykład nr 1

W najprostszym przykładzie szkoły zwykle używają liczb pierwszych, jedno- lub dwucyfrowych. Na przykład musisz rozwiązać następujące zadanie, znaleźć najmniejszą wspólną wielokrotność liczb 7 i 3, rozwiązanie jest dość proste, wystarczy je pomnożyć. W rezultacie jest liczba 21, mniejszej liczby po prostu nie ma.

Przykład nr 2

Druga wersja zadania jest znacznie trudniejsza. Podano liczby 300 i 1260, znalezienie LOC jest obowiązkowe. Aby rozwiązać problem, zakłada się następujące działania:

Rozkład pierwszej i drugiej liczby na proste czynniki. 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7. Pierwszy etap został zakończony.

Drugi etap polega na pracy z już uzyskanymi danymi. Każda z otrzymanych liczb musi brać udział w obliczeniu wyniku końcowego. Dla każdego czynnika z liczb pierwotnych pobierana jest największa liczba wystąpień. LCM jest liczbą ogólną, więc czynniki liczb muszą się w niej powtórzyć, w każdej z nich, nawet tych, które występują w jednym egzemplarzu. Obie liczby początkowe zawierają liczby 2, 3 i 5, w różnych potęgach; 7 występuje tylko w jednym przypadku.

Aby obliczyć wynik końcowy, należy przyjąć każdą liczbę w największej z potęg przedstawionych w równaniu. Pozostaje tylko pomnożyć i uzyskać odpowiedź; jeśli zostanie wypełnione poprawnie, zadanie składa się z dwóch etapów bez wyjaśnienia:

1) 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7.

2) NOC = 6300.

Na tym polega cały problem, jeśli spróbujesz obliczyć wymaganą liczbę przez pomnożenie, odpowiedź na pewno nie będzie poprawna, ponieważ 300 * 1260 = 378 000.

Badanie:

6300 / 300 = 21 - poprawnie;

6300 / 1260 = 5 - poprawnie.

Poprawność uzyskanego wyniku sprawdza się - dzieląc LCM przez obie liczby pierwotne, jeśli liczba jest liczbą całkowitą w obu przypadkach, to odpowiedź jest prawidłowa.

Co oznacza NOC w matematyce?

Jak wiadomo, w matematyce nie ma ani jednej bezużytecznej funkcji, ta nie jest wyjątkiem. Najczęstszym celem tej liczby jest sprowadzenie ułamków do wspólnego mianownika. Czego najczęściej uczy się w klasach 5-6 szkoły średniej. Jest to dodatkowo wspólny dzielnik wszystkich wielokrotności, jeśli w zadaniu występują takie warunki. Podobne wyrażenie może znaleźć wielokrotności nie tylko dwóch liczb, ale także znacznie większych liczb - trzech, pięciu i tak dalej. Im więcej liczb, tym więcej działań w zadaniu, ale złożoność nie wzrasta.

Na przykład, biorąc pod uwagę liczby 250, 600 i 1500, musisz znaleźć ich wspólny LCM:

1) 250 = 25 * 10 = 5 2 *5 * 2 = 5 3 * 2 - ten przykład szczegółowo opisuje faktoryzację, bez redukcji.

2) 600 = 60 * 10 = 3 * 2 3 *5 2 ;

3) 1500 = 15 * 100 = 33 * 5 3 *2 2 ;

Aby skomponować wyrażenie, należy wymienić wszystkie czynniki, w tym przypadku podano 2, 5, 3 - dla wszystkich tych liczb konieczne jest określenie maksymalnego stopnia.

Uwaga: wszystkie czynniki należy doprowadzić do całkowitego uproszczenia, jeśli to możliwe, rozłożonego na poziom jednocyfrowy.

Badanie:

1) 3000 / 250 = 12 - poprawnie;

2) 3000 / 600 = 5 - prawda;

3) 3000 / 1500 = 2 - poprawnie.

Ta metoda nie wymaga żadnych sztuczek ani genialnych umiejętności, wszystko jest proste i jasne.

Inny sposób

W matematyce wiele rzeczy jest ze sobą powiązanych, wiele rzeczy można rozwiązać na dwa lub więcej sposobów, to samo dotyczy znajdowania najmniejszej wspólnej wielokrotności, LCM. Poniższą metodę można zastosować w przypadku prostych liczb dwucyfrowych i jednocyfrowych. Tworzona jest tabela, w której mnożną wprowadza się pionowo, mnożnik poziomo, a iloczyn jest wskazany w przecinających się komórkach kolumny. Możesz odzwierciedlić tabelę za pomocą linii, wziąć liczbę i zapisać wyniki pomnożenia tej liczby przez liczby całkowite, od 1 do nieskończoności, czasami wystarczy 3-5 punktów, druga i kolejne liczby przechodzą ten sam proces obliczeniowy. Wszystko dzieje się, dopóki nie zostanie znaleziona wspólna wielokrotność.

Biorąc pod uwagę liczby 30, 35, 42, musisz znaleźć LCM łączący wszystkie liczby:

1) Wielokrotności 30: 60, 90, 120, 150, 180, 210, 250 itd.

2) Wielokrotności 35: 70, 105, 140, 175, 210, 245 itd.

3) Wielokrotności 42: 84, 126, 168, 210, 252 itd.

Można zauważyć, że wszystkie liczby są dość różne, jedyną wspólną liczbą jest 210, więc będzie to NOC. Wśród procesów biorących udział w tym obliczeniu istnieje również największy wspólny dzielnik, który jest obliczany według podobnych zasad i często spotykany w sąsiednich problemach. Różnica jest niewielka, ale dość znacząca, LCM polega na obliczeniu liczby podzielonej przez wszystkie podane wartości początkowe, a GCD polega na obliczeniu największej wartości, przez którą podzielone są liczby pierwotne.

Kalkulator online pozwala szybko znaleźć największy wspólny dzielnik i najmniejszą wspólną wielokrotność dla dwóch lub dowolnej innej liczby liczb.

Kalkulator do znajdowania GCD i LCM

Znajdź GCD i LOC

Znaleziono GCD i LOC: 5806

Jak korzystać z kalkulatora

  • Wprowadź liczby w polu wejściowym
  • Jeśli wprowadzisz nieprawidłowe znaki, pole wprowadzania zostanie podświetlone na czerwono
  • kliknij przycisk „Znajdź GCD i LCM”.

Jak wprowadzać liczby

  • Liczby wprowadza się oddzielając spacją, kropką lub przecinkiem
  • Długość wprowadzanych numerów nie jest ograniczona, więc znalezienie GCD i LCM długich liczb nie jest trudne

Co to są GCD i NOC?

Największy wspólny dzielnik kilka liczb to największa naturalna liczba całkowita, przez którą wszystkie liczby pierwotne są podzielne bez reszty. Największy wspólny dzielnik jest skracany jako GCD.
Najmniejsza wspólna wielokrotność kilka liczb to najmniejsza liczba, która dzieli się przez każdą z liczb pierwotnych bez reszty. Najmniejsza wspólna wielokrotność jest skracana jako NOC.

Jak sprawdzić, czy liczba jest podzielna przez inną liczbę bez reszty?

Aby dowiedzieć się, czy jedna liczba jest podzielna przez inną bez reszty, możesz skorzystać z niektórych właściwości podzielności liczb. Następnie łącząc je, można sprawdzić podzielność niektórych z nich i ich kombinacji.

Niektóre oznaki podzielności liczb

1. Test podzielności liczby przez 2
Aby ustalić, czy liczba jest podzielna przez dwa (czy jest parzysta), wystarczy spojrzeć na ostatnią cyfrę tej liczby: jeśli jest równa 0, 2, 4, 6 lub 8, to liczba jest parzysta, co oznacza, że ​​jest podzielna przez 2.
Przykład: ustalić, czy liczba 34938 jest podzielna przez 2.
Rozwiązanie: Patrzymy na ostatnią cyfrę: 8 - oznacza to, że liczba jest podzielna przez dwa.

2. Test podzielności liczby przez 3
Liczba jest podzielna przez 3, gdy suma jej cyfr jest podzielna przez trzy. Zatem, aby ustalić, czy liczba jest podzielna przez 3, należy obliczyć sumę cyfr i sprawdzić, czy jest ona podzielna przez 3. Nawet jeśli suma cyfr jest bardzo duża, można powtórzyć ten sam proces jeszcze raz.
Przykład: ustalić, czy liczba 34938 jest podzielna przez 3.
Rozwiązanie: Liczymy sumę liczb: 3+4+9+3+8 = 27. 27 jest podzielne przez 3, co oznacza, że ​​liczba ta jest podzielna przez trzy.

3. Test podzielności liczby przez 5
Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest zero lub pięć.
Przykład: ustalić, czy liczba 34938 jest podzielna przez 5.
Rozwiązanie: spójrz na ostatnią cyfrę: 8 oznacza, że ​​liczba NIE jest podzielna przez pięć.

4. Test podzielności liczby przez 9
Znak ten jest bardzo podobny do znaku podzielności przez trzy: liczba jest podzielna przez 9, gdy suma jej cyfr jest podzielna przez 9.
Przykład: ustalić, czy liczba 34938 jest podzielna przez 9.
Rozwiązanie: Liczymy sumę liczb: 3+4+9+3+8 = 27. 27 jest podzielne przez 9, co oznacza, że ​​liczba ta jest podzielna przez dziewięć.

Jak znaleźć GCD i LCM dwóch liczb

Jak znaleźć gcd dwóch liczb

Najprostszym sposobem obliczenia największego wspólnego dzielnika dwóch liczb jest znalezienie wszystkich możliwych dzielników tych liczb i wybranie największego.

Rozważmy tę metodę na przykładzie znalezienia NWD(28, 36):

  1. Rozkładamy na czynniki obie liczby: 28 = 1,2,2,7, 36 = 1,2,2,3,3
  2. Znajdujemy wspólne czynniki, czyli takie, które mają obie liczby: 1, 2 i 2.
  3. Obliczamy iloczyn tych czynników: 1 2 2 = 4 - jest to największy wspólny dzielnik liczb 28 i 36.

Jak znaleźć LCM dwóch liczb

Istnieją dwa najczęstsze sposoby znajdowania najmniejszej wielokrotności dwóch liczb. Pierwsza metoda polega na tym, że możesz zapisać pierwsze wielokrotności dwóch liczb, a następnie wybrać spośród nich liczbę, która będzie wspólna dla obu liczb i jednocześnie najmniejsza. Drugim jest znalezienie gcd tych liczb. Rozważmy tylko to.

Aby obliczyć LCM, należy obliczyć iloczyn liczb pierwotnych, a następnie podzielić go przez wcześniej znaleziony GCD. Znajdźmy LCM dla tych samych liczb 28 i 36:

  1. Znajdź iloczyn liczb 28 i 36: 28,36 = 1008
  2. NWD(28, 36), jak już wiadomo, jest równe 4
  3. LCM(28, 36) = 1008 / 4 = 252 .

Znajdowanie GCD i LCM dla kilku liczb

Największy wspólny dzielnik można znaleźć dla kilku liczb, a nie tylko dwóch. W tym celu liczby, które należy znaleźć dla największego wspólnego dzielnika, rozkłada się na czynniki pierwsze, a następnie oblicza się iloczyn wspólnych czynników pierwszych tych liczb. Możesz także użyć poniższej relacji, aby znaleźć gcd kilku liczb: NWD(a, b, c) = NWD(NWD(a, b), c).

Podobna zależność dotyczy najmniejszej wspólnej wielokrotności: LCM(a, b, c) = LCM(LCM(a, b), c)

Przykład: znajdź GCD i LCM dla liczb 12, 32 i 36.

  1. Najpierw rozłóżmy liczby na czynniki: 12 = 1,2,2,3, 32 = 1,2,2,2,2,2, 36 = 1,2,2,3,3.
  2. Znajdźmy wspólne czynniki: 1, 2 i 2.
  3. Ich produkt da NWD: 1,2,2 = 4
  4. Teraz znajdźmy LCM: w tym celu najpierw znajdźmy LCM(12, 32): 12·32 / 4 = 96 .
  5. Aby znaleźć LCM wszystkich trzech liczb, musisz znaleźć GCD(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , GCD = 1,2 · 2 3 = 12.
  6. LCM(12, 32, 36) = 96,36 / 12 = 288.

Aby rozwiązać przykłady za pomocą ułamków zwykłych, musisz znaleźć najniższy wspólny mianownik. Poniżej znajdują się szczegółowe instrukcje.

Jak znaleźć najmniejszy wspólny mianownik - pojęcie

Najmniejszy wspólny mianownik (LCD), w prostych słowach, to minimalna liczba, która jest podzielna przez mianowniki wszystkich ułamków w danym przykładzie. Innymi słowy, nazywa się to najmniejszą wspólną wielokrotnością (LCM). NOS stosuje się tylko wtedy, gdy mianowniki ułamków są różne.

Jak znaleźć najmniejszy wspólny mianownik – przykłady

Przyjrzyjmy się przykładom znajdowania NOC.

Oblicz: 3/5 + 2/15.

Rozwiązanie (sekwencja działań):

  • Patrzymy na mianowniki ułamków, upewniamy się, że są różne i że wyrażenia są jak najkrótsze.
  • Znajdujemy najmniejszą liczbę podzielną zarówno przez 5, jak i 15. Ta liczba będzie wynosić 15. Zatem 3/5 + 2/15 = ?/15.
  • Ustaliliśmy mianownik. Co będzie w liczniku? Dodatkowy mnożnik pomoże nam to rozgryźć. Dodatkowym czynnikiem jest liczba uzyskana poprzez podzielenie NZ przez mianownik danego ułamka. Dla 3/5 dodatkowy współczynnik wynosi 3, ponieważ 15/5 = 3. Dla drugiego ułamka dodatkowy współczynnik wynosi 1, ponieważ 15/15 = 1.
  • Po znalezieniu dodatkowego współczynnika mnożymy go przez liczniki ułamków i dodajemy otrzymane wartości. 3/5 + 2/15 = (3*3+2*1)/15 = (9+2)/15 = 11/15.


Odpowiedź: 3/5 + 2/15 = 11/15.

Jeśli w przykładzie dodano lub odjęto nie 2, ale 3 lub więcej ułamków, wówczas NCD należy przeszukać pod kątem tylu ułamków, ile podano.

Oblicz: 1/2 – 5/12 + 3/6

Rozwiązanie (kolejność działań):

  • Znalezienie najmniejszego wspólnego mianownika. Minimalna liczba podzielna przez 2, 12 i 6 to 12.
  • Otrzymujemy: 1/2 – 5/12 + 3/6 = ?/12.
  • Szukamy dodatkowych mnożników. Dla 1/2 – 6; dla 12.05 – 1; dla 3/6 – 2.
  • Mnożymy przez liczniki i przypisujemy odpowiednie znaki: 1/2 – 5/12 + 3/6 = (1*6 – 5*1 + 2*3)/12 = 7/12.

Odpowiedź: 1/2 – 5/12 + 3/6 = 7/12.

Rozważmy rozwiązanie następującego problemu. Krok chłopca wynosi 75 cm, a krok dziewczynki 60 cm. Należy znaleźć najmniejszą odległość, na której oboje wykonają całkowitą liczbę kroków.

Rozwiązanie. Cała ścieżka, którą przejdą dzieci, musi być podzielna przez 60 i 70, ponieważ każde z nich musi wykonać całkowitą liczbę kroków. Innymi słowy, odpowiedź musi być wielokrotnością 75 i 60.

Najpierw zapiszemy wszystkie wielokrotności liczby 75. Otrzymujemy:

  • 75, 150, 225, 300, 375, 450, 525, 600, 675, … .

Teraz zapiszmy liczby, które będą wielokrotnościami 60. Otrzymujemy:

  • 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

Teraz znajdujemy liczby znajdujące się w obu wierszach.

  • Typowe wielokrotności liczb to 300, 600 itd.

Najmniejszą z nich jest liczba 300. W tym przypadku będzie ona nazywana najmniejszą wspólną wielokrotnością liczb 75 i 60.

Wracając do stanu problemu, najmniejsza odległość, na jaką chłopcy wykonają całkowitą liczbę kroków, będzie wynosić 300 cm. Chłopiec pokona tę ścieżkę w 4 krokach, a dziewczynka będzie musiała zrobić 5 kroków.

Wyznaczanie najmniejszej wspólnej wielokrotności

  • Najmniejsza wspólna wielokrotność dwóch liczb naturalnych a i b to najmniejsza liczba naturalna będąca wielokrotnością obu liczb a i b.

Aby znaleźć najmniejszą wspólną wielokrotność dwóch liczb, nie trzeba wpisywać z rzędu wszystkich wielokrotności tych liczb.

Możesz zastosować następującą metodę.

Jak znaleźć najmniejszą wspólną wielokrotność

Najpierw musisz rozłożyć te liczby na czynniki pierwsze.

  • 60 = 2*2*3*5,
  • 75=3*5*5.

Zapiszmy teraz wszystkie czynniki biorące udział w rozwinięciu pierwszej liczby (2,2,3,5) i dodajmy do tego wszystkie brakujące czynniki z rozwinięcia drugiej liczby (5).

W rezultacie otrzymujemy szereg liczb pierwszych: 2,2,3,5,5. Iloczyn tych liczb będzie najmniej wspólnym dzielnikiem tych liczb. 2*2*3*5*5 = 300.

Ogólny schemat znajdowania najmniejszej wspólnej wielokrotności

  • 1. Podziel liczby na czynniki pierwsze.
  • 2. Zapisz czynniki pierwsze wchodzące w skład jednego z nich.
  • 3. Dodaj do tych czynników wszystkie, które są w rozwinięciu pozostałych, ale nie w wybranym.
  • 4. Znajdź iloczyn wszystkich zapisanych czynników.

Ta metoda jest uniwersalna. Można go użyć do znalezienia najmniejszej wspólnej wielokrotności dowolnej liczby liczb naturalnych.



Podobne artykuły

  • Etnogeneza i historia etniczna Rosjan

    Rosyjska grupa etniczna jest największą ludnością w Federacji Rosyjskiej. Rosjanie mieszkają także w krajach sąsiednich, USA, Kanadzie, Australii i wielu krajach europejskich. Należą do dużej rasy europejskiej. Obecny teren osadnictwa...

  • Ludmiła Pietruszewska - Wędrówki po śmierci (kolekcja)

    W tej książce znajdują się historie, które w taki czy inny sposób są powiązane z naruszeniami prawa: czasami można po prostu popełnić błąd, a czasami uznać prawo za niesprawiedliwe. Tytułowa opowieść ze zbioru „Wędrówki po śmierci” to kryminał z elementami...

  • Składniki na deser z ciasta mlecznego

    Milky Way to bardzo smaczny i delikatny batonik z nugatem, karmelem i czekoladą. Nazwa cukierka jest bardzo oryginalna; w tłumaczeniu oznacza „Drogę Mleczną”. Spróbowawszy raz, na zawsze zakochasz się w przestronnym barze, który przyniosłeś...

  • Jak płacić rachunki za media online bez prowizji

    Istnieje kilka sposobów płacenia za mieszkanie i usługi komunalne bez prowizji. Drodzy Czytelnicy! W artykule omówiono typowe sposoby rozwiązywania problemów prawnych, jednak każdy przypadek jest indywidualny. Jeśli chcesz wiedzieć jak...

  • Kiedy pełniłem funkcję woźnicy na poczcie. Kiedy służyłem jako woźnica na poczcie

    Kiedy służyłem jako woźnica na poczcie, byłem młody, byłem silny i głęboko, bracia, w jednej wsi kochałem wtedy dziewczynę. Z początku nie wyczuwałem w dziewczynie kłopotów, Potem oszukałem go na dobre: ​​Gdziekolwiek pójdę, gdziekolwiek pójdę, zwrócę się do mojej ukochanej...

  • Skatow A. Kolcow. "Las. VIVOS VOCO: N.N. Skatov, „Dramat jednego wydania” Początek wszystkich początków

    Niekrasow. Skatow N.N. M.: Młoda Gwardia, 1994. - 412 s. (Seria „Życie niezwykłych ludzi”) Nikołaj Aleksiejewicz Niekrasow 12.10.1821 - 01.08.1878 Książka słynnego krytyka literackiego Nikołaja Skatowa poświęcona jest biografii N.A. Niekrasowa,...