Pronalaženje površine zakrivljenog trapeza. Pronalaženje površine figure ograničene linijama y=f(x), x=g(y)

Zadatak br. 3. Napravite crtež i izračunajte površinu figure ograničene linijama

Primena integrala za rešavanje primenjenih problema

Obračun površine

Definitivni integral neprekidne nenegativne funkcije f(x) je numerički jednak površina krivolinijskog trapeza ograničenog krivom y = f(x), osom O x i pravim linijama x = a i x = b. U skladu s tim, formula površine se piše na sljedeći način:

Pogledajmo neke primjere izračunavanja površina ravnih figura.

Zadatak br. 1. Izračunajte površinu ograničenu linijama y = x 2 +1, y = 0, x = 0, x = 2.

Rješenje. Konstruirajmo figuru čiju ćemo površinu morati izračunati.

y = x 2 + 1 je parabola čije su grane usmjerene prema gore, a parabola je pomjerena prema gore za jednu jedinicu u odnosu na O y osu (slika 1).

Slika 1. Grafikon funkcije y = x 2 + 1

Zadatak br. 2. Izračunajte površinu ograničenu linijama y = x 2 – 1, y = 0 u rasponu od 0 do 1.


Rješenje. Grafikon ove funkcije je parabola grana koje su usmjerene prema gore, a parabola je pomjerena u odnosu na osu O y prema dolje za jednu jedinicu (slika 2).

Slika 2. Grafikon funkcije y = x 2 – 1


Zadatak br. 3. Napravite crtež i izračunajte površinu figure ograničene linijama

y = 8 + 2x – x 2 i y = 2x – 4.

Rješenje. Prva od ove dvije linije je parabola čije su grane usmjerene prema dolje, jer je koeficijent x 2 negativan, a druga prava je prava koja seče obje koordinatne ose.

Da bismo konstruisali parabolu, nalazimo koordinate njenog vrha: y’=2 – 2x; 2 – 2x = 0, x = 1 – apscisa temena; y(1) = 8 + 2∙1 – 1 2 = 9 je njegova ordinata, N(1;9) je vrh.

Sada pronađimo tačke preseka parabole i prave tako što ćemo rešiti sistem jednačina:

Izjednačavanje desnih strana jednačine čije su lijeve strane jednake.

Dobijamo 8 + 2x – x 2 = 2x – 4 ili x 2 – 12 = 0, odakle .

Dakle, tačke su presečne tačke parabole i prave (slika 1).


Slika 3 Grafikoni funkcija y = 8 + 2x – x 2 i y = 2x – 4

Konstruirajmo pravu liniju y = 2x – 4. Ona prolazi kroz tačke (0;-4), (2;0) na koordinatnim osa.

Da biste konstruisali parabolu, možete koristiti i njene tačke preseka sa osom 0x, odnosno korenima jednačine 8 + 2x – x 2 = 0 ili x 2 – 2x – 8 = 0. Koristeći Vietinu teoremu, lako je da nađemo njegove korijene: x 1 = 2, x 2 = 4.

Na slici 3 prikazana je figura (parabolički segment M 1 N M 2) ograničena ovim linijama.

Drugi dio problema je pronaći površinu ove figure. Njegova površina se može pronaći pomoću određenog integrala prema formuli .

U odnosu na ovaj uslov dobijamo integral:

2 Izračunavanje zapremine tela rotacije

Zapremina tijela dobivena rotacijom krive y = f(x) oko ose O x izračunava se po formuli:

Kada se rotira oko ose O y, formula izgleda ovako:

Zadatak br. 4. Odrediti zapreminu tijela dobivenu rotacijom zakrivljenog trapeza ograničenog pravim linijama x = 0 x = 3 i krivom y = oko ose O x.

Rješenje. Nacrtajmo sliku (slika 4).

Slika 4. Grafikon funkcije y =

Potrebna zapremina je


Zadatak br. 5. Izračunajte zapreminu tijela dobivenu rotacijom zakrivljenog trapeza ograničenog krivom y = x 2 i pravim linijama y = 0 i y = 4 oko ose O y.

Rješenje. Imamo:

Pregledajte pitanja









Nazad napred

Pažnja! Pregledi slajdova služe samo u informativne svrhe i možda ne predstavljaju sve karakteristike prezentacije. Ako ste zainteresovani za ovaj rad, preuzmite punu verziju.

Ključne riječi: integralni, krivolinijski trapez, površina figura omeđena ljiljanima

Oprema Enterijer: marker, računar, multimedijalni projektor

Vrsta lekcije: lekcija-predavanje

Ciljevi lekcije:

  • edukativni: stvoriti kulturu mentalnog rada, stvoriti situaciju uspjeha za svakog učenika i stvoriti pozitivnu motivaciju za učenje; razviti sposobnost govora i slušanja drugih.
  • razvijanje: formiranje samostalnog mišljenja učenika u primjeni znanja u različitim situacijama, sposobnost analize i izvođenja zaključaka, razvoj logike, razvoj sposobnosti pravilnog postavljanja pitanja i pronalaženja odgovora na njih. Unapređenje formiranja računarskih veština, razvijanje mišljenja učenika u toku izvršavanja predloženih zadataka, razvijanje algoritamske kulture.
  • obrazovni: formirati pojmove o krivolinijskom trapezu, o integralu, savladati vještine izračunavanja površina ravnih figura

Metoda nastave: objašnjavajuće i ilustrativno.

Tokom nastave

U prethodnim razredima smo naučili da izračunamo površine figura čije su granice izlomljene linije. U matematici postoje metode koje vam omogućavaju da izračunate površine figura ograničenih krivuljama. Takve figure se nazivaju krivolinijski trapezi, a njihova površina se izračunava pomoću antiderivata.

Krivolinijski trapez ( slajd 1)

Zakrivljeni trapez je lik ograničen grafom funkcije, ( sh.m.), ravno x = a I x = b i x-osa

Razne vrste zakrivljenih trapeza ( slajd 2)

Razmatramo različite vrste krivolinijskih trapeza i primjećujemo: jedna od pravih je degenerirana u tačku, ulogu granične funkcije igra prava linija

Površina zakrivljenog trapeza (slajd 3)

Popravite lijevi kraj intervala A, i onu pravu X promijenit ćemo se, tj. pomjerimo desni zid krivolinijskog trapeza i dobijemo promjenjivu figuru. Područje promjenljivog krivolinijskog trapeza ograničenog grafom funkcije je antiderivat F za funkciju f

I na segmentu [ a; b] područje krivolinijskog trapeza formiranog od strane funkcije f, jednak je prirastu antiderivata ove funkcije:

Vježba 1:

Pronađite površinu krivolinijskog trapeza ograničenog grafom funkcije: f(x) = x 2 i ravno y = 0, x = 1, x = 2.

Rješenje: ( prema algoritmu slajd 3)

Nacrtajmo graf funkcije i linije

Nađimo jedan od antiderivata funkcije f(x) = x 2 :

Samotestiranje na slajdu

Integral

Razmotrimo krivolinijski trapez definiran funkcijom f na segmentu [ a; b]. Podijelimo ovaj segment na nekoliko dijelova. Površina cijelog trapeza podijelit će se na zbir površina manjih zakrivljenih trapeza. ( slajd 5). Svaki takav trapez se približno može smatrati pravokutnikom. Zbir površina ovih pravokutnika daje približnu predstavu o cijeloj površini zakrivljenog trapeza. Što manji dijelimo segment [ a; b], to preciznije izračunavamo površinu.

Zapišimo ove argumente u obliku formula.

Podijelite segment [ a; b] na n dijelova po tačkama x 0 =a, x1,...,xn = b. Dužina k- th označiti sa xk = xk – xk-1. Hajde da napravimo sumu

Geometrijski, ovaj zbir predstavlja površinu figure zasjenjenu na slici ( sh.m.)

Zbroji oblika nazivaju se integralni zbroji za funkciju f. (š.m.)

Integralni zbroji daju približnu vrijednost površine. Tačna vrijednost se dobija prelaskom do granice. Zamislimo da rafiniramo particiju segmenta [ a; b] tako da dužine svih malih segmenata teže nuli. Tada će se površina sastavljene figure približiti području zakrivljenog trapeza. Možemo reći da je površina zakrivljenog trapeza jednaka granici integralnih suma, Sc.t. (š.m.) ili integralni, tj.

definicija:

Integral funkcije f(x) od a prije b naziva se granica integralnih suma

= (š.m.)

Newton-Leibnizova formula.

Sjećamo se da je granica integralnih suma jednaka površini krivolinijskog trapeza, što znači da možemo napisati:

Sc.t. = (š.m.)

S druge strane, površina zakrivljenog trapeza izračunava se pomoću formule

S k.t. (š.m.)

Upoređujući ove formule, dobijamo:

= (š.m.)

Ova jednakost se zove Newton-Leibnizova formula.

Radi lakšeg izračuna, formula se piše kao:

= = (š.m.)

Zadaci: (š.m.)

1. Izračunajte integral koristeći Newton-Leibniz formulu: ( provjeri na slajdu 5)

2. Sastaviti integrale prema crtežu ( provjeri na slajdu 6)

3. Pronađite površinu figure ograničene linijama: y = x 3, y = 0, x = 1, x = 2. ( Slajd 7)

Pronalaženje površina ravnih figura ( slajd 8)

Kako pronaći površinu figura koje nisu zakrivljeni trapezi?

Neka su date dvije funkcije, čije grafike vidite na slajdu . (š.m.) Pronađite površinu zasjenjene figure . (š.m.). Da li je dotična figura zakrivljeni trapez? Kako možete pronaći njegovu površinu koristeći svojstvo aditivnosti površine? Razmotrite dva zakrivljena trapeza i oduzmite površinu drugog od površine jednog od njih ( sh.m.)

Kreirajmo algoritam za pronalaženje područja pomoću animacije na slajdu:

  1. Grafičke funkcije
  2. Projektujte presečne tačke grafika na x-osu
  3. Obojite figuru dobijenu kada se grafovi ukrste
  4. Pronađite krivolinijske trapeze čiji je presjek ili sjedinjenje zadana figura.
  5. Izračunajte površinu svakog od njih
  6. Pronađite razliku ili zbir površina

Usmeni zadatak: Kako dobiti površinu zasjenjene figure (prikazati pomoću animacije, slajd 8 i 9)

Zadaća: Proradite bilješke, br. 353 (a), br. 364 (a).

Bibliografija

  1. Algebra i počeci analize: udžbenik za 9-11 razred večernje (smjenske) škole / ur. G.D. Glaser. - M: Prosvetljenje, 1983.
  2. Bašmakov M.I. Algebra i počeci analize: udžbenik za 10-11 razred srednje škole / Bašmakov M.I. - M: Prosvjeta, 1991.
  3. Bašmakov M.I. Matematika: udžbenik za ustanove poč. i srijeda prof. obrazovanje / M.I. Bashmakov. - M: Akademija, 2010.
  4. Kolmogorov A.N. Algebra i počeci analize: udžbenik za 10-11 razred. obrazovne institucije / A.N. Kolmogorov. - M: Obrazovanje, 2010.
  5. Ostrovsky S.L. Kako napraviti prezentaciju za čas?/ S.L. Ostrovsky. – M.: 01.09.2010.

U ovom članku ćete naučiti kako pronaći površinu figure ograničenu linijama koristeći integralne proračune. S formulisanjem ovakvog problema prvi put se susrećemo u srednjoj školi, kada smo tek završili proučavanje određenih integrala i vreme je da počnemo sa geometrijskom interpretacijom stečenog znanja u praksi.

Dakle, ono što je potrebno za uspješno rješavanje problema pronalaženja površine figure pomoću integrala:

  • Sposobnost izrade kompetentnih crteža;
  • Sposobnost rješavanja određenog integrala koristeći dobro poznatu Newton-Leibnizovu formulu;
  • Sposobnost da se "vidi" isplativija opcija rješenja - tj. razumjeti kako će biti zgodnije izvršiti integraciju u jednom ili drugom slučaju? Duž x-ose (OX) ili y-ose (OY)?
  • Pa, gdje bismo bili bez tačnih proračuna?) Ovo uključuje razumijevanje kako riješiti tu drugu vrstu integrala i ispravne numeričke proračune.

Algoritam za rješavanje problema izračunavanja površine figure ograničene linijama:

1. Pravimo crtež. Preporučljivo je to učiniti na kockastom komadu papira, u velikom obimu. Naziv ove funkcije potpisujemo olovkom iznad svakog grafikona. Potpisivanje grafikona se vrši isključivo radi pogodnosti daljih proračuna. Nakon što dobijete graf željene brojke, u većini slučajeva će odmah biti jasno koje će se granice integracije koristiti. Tako problem rješavamo grafički. Međutim, dešava se da su vrijednosti granica razlomke ili iracionalne. Stoga možete napraviti dodatne proračune, idite na drugi korak.

2. Ako granice integracije nisu eksplicitno specificirane, tada nalazimo tačke preseka grafova među sobom i vidimo da li se naše grafičko rešenje poklapa sa analitičkim.

3. Zatim morate analizirati crtež. Ovisno o tome kako su raspoređeni grafovi funkcija, postoje različiti pristupi pronalaženju površine figure. Pogledajmo različite primjere pronalaženja površine figure pomoću integrala.

3.1. Najklasičnija i najjednostavnija verzija problema je kada trebate pronaći područje zakrivljenog trapeza. Šta je zakrivljeni trapez? Ovo je ravna figura ograničena x-osom (y = 0), ravno x = a, x = b i bilo koja kriva kontinuirana na intervalu od a prije b. Štaviše, ova brojka nije negativna i nalazi se ne ispod x-ose. U ovom slučaju, površina krivolinijskog trapeza numerički je jednaka određenom integralu, izračunatom pomoću Newton-Leibnizove formule:

Primjer 1 y = x2 – 3x + 3, x = 1, x = 3, y = 0.

Kojim linijama je lik ograničen? Imamo parabolu y = x2 – 3x + 3, koji se nalazi iznad ose OH, nije negativan, jer sve tačke ove parabole imaju pozitivne vrijednosti. Dalje, date prave linije x = 1 I x = 3, koji idu paralelno sa osom OU, su granične linije figure lijevo i desno. Pa y = 0, to je i x-osa, koja ograničava sliku odozdo. Dobivena figura je zasjenjena, kao što se može vidjeti sa slike s lijeve strane. U tom slučaju možete odmah početi rješavati problem. Pred nama je jednostavan primjer zakrivljenog trapeza, koji zatim rješavamo pomoću Newton-Leibnizove formule.

3.2. U prethodnom paragrafu 3.1 ispitali smo slučaj kada se zakrivljeni trapez nalazi iznad x-ose. Sada razmotrite slučaj kada su uslovi problema isti, osim što funkcija leži ispod x-ose. Standardnoj Newton-Leibnizovoj formuli dodaje se minus. U nastavku ćemo razmotriti kako riješiti takav problem.

Primjer 2 . Izračunajte površinu figure ograničene linijama y = x2 + 6x + 2, x = -4, x = -1, y = 0.

U ovom primjeru imamo parabolu y = x2 + 6x + 2, koja potiče od ose OH, ravno x = -4, x = -1, y = 0. Evo y = 0 ograničava željenu figuru odozgo. Direktno x = -4 I x = -1 ovo su granice unutar kojih će se izračunati definitivni integral. Princip rješavanja problema pronalaženja površine figure gotovo se u potpunosti poklapa s primjerom broj 1. Jedina razlika je u tome što data funkcija nije pozitivna, a također je kontinuirana na intervalu [-4; -1] . Kako to misliš nije pozitivno? Kao što se vidi sa slike, figura koja se nalazi unutar datih x ima isključivo “negativne” koordinate, što trebamo vidjeti i zapamtiti prilikom rješavanja problema. Područje figure tražimo koristeći Newton-Leibniz formulu, samo sa znakom minus na početku.

Članak nije dovršen.

U prethodnom dijelu, posvećenom analizi geometrijskog značenja određenog integrala, dobili smo niz formula za izračunavanje površine krivolinijskog trapeza:

Yandex.RTB R-A-339285-1

S (G) = ∫ a b f (x) d x za kontinuiranu i nenegativnu funkciju y = f (x) na intervalu [ a ; b ] ,

S (G) = - ∫ a b f (x) d x za kontinuiranu i nepozitivnu funkciju y = f (x) na intervalu [ a ; b ] .

Ove formule su primjenjive za rješavanje relativno jednostavnih problema. U stvarnosti, često ćemo morati da radimo sa složenijim figurama. S tim u vezi, ovaj dio ćemo posvetiti analizi algoritama za izračunavanje površine figura koje su ograničene funkcijama u eksplicitnom obliku, tj. kao y = f(x) ili x = g(y).

Teorema

Neka su funkcije y = f 1 (x) i y = f 2 (x) definirane i kontinuirane na intervalu [ a ; b ] , i f 1 (x) ≤ f 2 (x) za bilo koju vrijednost x iz [ a ; b ] . Tada će formula za izračunavanje površine figure G, ograničene linijama x = a, x = b, y = f 1 (x) i y = f 2 (x) izgledati kao S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Slična formula će biti primenljiva za površinu figure ograničenu linijama y = c, y = d, x = g 1 (y) i x = g 2 (y): S (G) = ∫ c d ( g 2 (y) - g 1 (y) d y .

Dokaz

Pogledajmo tri slučaja za koja će formula vrijediti.

U prvom slučaju, uzimajući u obzir svojstvo aditivnosti površine, zbir površina originalne figure G i krivolinijskog trapeza G 1 jednak je površini figure G 2. To znači da

Dakle, S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

Posljednju tranziciju možemo izvesti koristeći treće svojstvo određenog integrala.

U drugom slučaju, jednakost je tačna: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - f 1 (x)) d x

Grafička ilustracija će izgledati ovako:

Ako su obe funkcije nepozitivne, dobijamo: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Grafička ilustracija će izgledati ovako:

Idemo dalje na razmatranje opšteg slučaja kada y = f 1 (x) i y = f 2 (x) sijeku osu O x.

Tačke presjeka označavamo sa x i, i = 1, 2, . . . , n - 1 . Ove tačke dijele segment [a; b ] na n dijelova x i - 1 ; x i, i = 1, 2, . . . , n, gdje je α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

dakle,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Posljednju tranziciju možemo napraviti koristeći peto svojstvo određenog integrala.

Ilustrujmo opšti slučaj na grafu.

Formula S (G) = ∫ a b f 2 (x) - f 1 (x) d x može se smatrati dokazanom.

Pređimo sada na analizu primjera izračunavanja površine figura koje su ograničene linijama y = f (x) i x = g (y).

Započet ćemo naše razmatranje bilo kojeg od primjera konstruiranjem grafa. Slika će nam omogućiti da složene oblike predstavimo kao spojeve jednostavnijih oblika. Ako vam je konstruisanje grafova i figura na njima teško, možete proučiti odeljak o osnovnim elementarnim funkcijama, geometrijskoj transformaciji grafova funkcija, kao i o konstruisanju grafova tokom proučavanja funkcije.

Primjer 1

Potrebno je odrediti površinu figure koja je ograničena parabolom y = - x 2 + 6 x - 5 i pravim linijama y = - 1 3 x - 1 2, x = 1, x = 4.

Rješenje

Nacrtajmo linije na grafu u Dekartovom koordinatnom sistemu.

Na segmentu [ 1 ; 4 ] grafik parabole y = - x 2 + 6 x - 5 nalazi se iznad prave linije y = - 1 3 x - 1 2. U tom smislu, da bismo dobili odgovor koristimo formulu dobijenu ranije, kao i metodu izračunavanja definitivnog integrala pomoću Newton-Leibnizove formule:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Odgovor: S(G) = 13

Pogledajmo složeniji primjer.

Primjer 2

Potrebno je izračunati površinu figure koja je ograničena linijama y = x + 2, y = x, x = 7.

Rješenje

U ovom slučaju imamo samo jednu pravu liniju koja je paralelna sa x-osi. Ovo je x = 7. To od nas zahtijeva da sami pronađemo drugu granicu integracije.

Napravimo graf i nacrtajmo na njemu linije date u iskazu problema.

Imajući graf pred očima, lako možemo odrediti da će donja granica integracije biti apscisa tačke preseka grafika prave linije y = x i poluparabole y = x + 2. Da bismo pronašli apscisu koristimo jednakosti:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

Ispada da je apscisa presječne tačke x = 2.

Skrećemo vam pažnju na činjenicu da se u opštem primeru na crtežu prave y = x + 2, y = x seku u tački (2; 2), pa se ovakvi detaljni proračuni mogu činiti nepotrebnim. Ovdje smo dali ovako detaljno rješenje samo zato što u složenijim slučajevima rješenje možda nije tako očigledno. To znači da je uvijek bolje analitički izračunati koordinate presjeka linija.

Na intervalu [ 2 ; 7] grafik funkcije y = x nalazi se iznad grafika funkcije y = x + 2. Primijenimo formulu za izračunavanje površine:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Odgovor: S (G) = 59 6

Primjer 3

Potrebno je izračunati površinu figure koja je ograničena grafovima funkcija y = 1 x i y = - x 2 + 4 x - 2.

Rješenje

Nacrtajmo linije na grafikonu.

Hajde da definišemo granice integracije. Da bismo to učinili, odredimo koordinate tačaka presjeka pravih izjednačavanjem izraza 1 x i - x 2 + 4 x - 2. Pod uslovom da x nije nula, jednakost 1 x = - x 2 + 4 x - 2 postaje ekvivalentna jednačini trećeg stepena - x 3 + 4 x 2 - 2 x - 1 = 0 sa cjelobrojnim koeficijentima. Da biste osvježili vaše pamćenje algoritma za rješavanje ovakvih jednadžbi, možemo pogledati odjeljak “Rješavanje kubnih jednadžbi”.

Koren ove jednadžbe je x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

Podijelimo izraz - x 3 + 4 x 2 - 2 x - 1 binomom x - 1, dobijamo: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Preostale korijene možemo pronaći iz jednačine x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

Našli smo interval x ∈ 1; 3 + 13 2, u kojem se lik G nalazi iznad plave i ispod crvene linije. Ovo nam pomaže da odredimo površinu figure:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Odgovor: S (G) = 7 + 13 3 - ln 3 + 13 2

Primjer 4

Potrebno je izračunati površinu figure koja je ograničena krivuljama y = x 3, y = - log 2 x + 1 i osom apscise.

Rješenje

Nacrtajmo sve linije na graf. Graf funkcije y = - log 2 x + 1 možemo dobiti iz grafa y = log 2 x ako ga postavimo simetrično oko x-ose i pomaknemo za jednu jedinicu gore. Jednačina x-ose je y = 0.

Označimo tačke preseka pravih.

Kao što se vidi sa slike, grafovi funkcija y = x 3 i y = 0 seku se u tački (0; 0). Ovo se dešava zato što je x = 0 jedini pravi koren jednačine x 3 = 0.

x = 2 je jedini korijen jednadžbe - log 2 x + 1 = 0, pa se grafovi funkcija y = - log 2 x + 1 i y = 0 sijeku u tački (2; 0).

x = 1 je jedini korijen jednadžbe x 3 = - log 2 x + 1 . U tom smislu, grafovi funkcija y = x 3 i y = - log 2 x + 1 seku se u tački (1; 1). Posljednja izjava možda nije očigledna, ali jednačina x 3 = - log 2 x + 1 ne može imati više od jednog korijena, jer je funkcija y = x 3 striktno rastuća, a funkcija y = - log 2 x + 1 je striktno opadajuće.

Dalje rješenje uključuje nekoliko opcija.

Opcija #1

Lik G možemo zamisliti kao zbir dva krivolinijska trapeza koja se nalaze iznad x-ose, od kojih se prvi nalazi ispod srednje linije na segmentu x ∈ 0; 1, a drugi je ispod crvene linije na segmentu x ∈ 1; 2. To znači da će površina biti jednaka S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Opcija br. 2

Slika G se može predstaviti kao razlika dvije figure, od kojih se prva nalazi iznad x-ose i ispod plave linije na segmentu x ∈ 0; 2, a druga između crvene i plave linije na segmentu x ∈ 1; 2. To nam omogućava da pronađemo područje na sljedeći način:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

U ovom slučaju, da biste pronašli površinu morat ćete koristiti formulu oblika S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. U stvari, linije koje ograničavaju figuru mogu se predstaviti kao funkcije argumenta y.

Riješimo jednadžbe y = x 3 i - log 2 x + 1 u odnosu na x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Dobijamo potrebnu površinu:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Odgovor: S (G) = 1 ln 2 - 1 4

Primjer 5

Potrebno je izračunati površinu figure koja je ograničena linijama y = x, y = 2 3 x - 3, y = - 1 2 x + 4.

Rješenje

Crvenom linijom iscrtavamo liniju definiranu funkcijom y = x. Plavom bojom nacrtamo liniju y = - 1 2 x + 4, a crnom liniju y = 2 3 x - 3.

Označimo tačke ukrštanja.

Nađimo točke presjeka grafova funkcija y = x i y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 Provjerite: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 nije rješenje jednadžbe x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 je rješenje jednadžbe ⇒ (4; 2) presječna tačka i y = x i y = - 1 2 x + 4

Nađimo točku presjeka grafova funkcija y = x i y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Provjerite: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 je rješenje jednadžbe ⇒ (9 ; 3) tačka a s y = x i y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 Ne postoji rješenje jednačine

Nađimo točku presjeka pravih y = - 1 2 x + 4 i y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1 ) tačka presjeka y = - 1 2 x + 4 i y = 2 3 x - 3

Metoda br. 1

Zamislimo površinu željene figure kao zbir površina pojedinih figura.

Tada je površina figure:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Metoda br. 2

Površina originalne figure može se predstaviti kao zbir dvije druge figure.

Zatim rješavamo jednadžbu linije u odnosu na x, a tek nakon toga primjenjujemo formulu za izračunavanje površine figure.

y = x ⇒ x = y 2 crvena linija y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 crna linija y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

Dakle, područje je:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

Kao što vidite, vrijednosti su iste.

Odgovor: S (G) = 11 3

Rezultati

Da bismo pronašli površinu figure koja je ograničena datim linijama, trebamo konstruirati linije na ravni, pronaći njihove točke presjeka i primijeniti formulu da pronađemo površinu. U ovom dijelu smo ispitali najčešće varijante zadataka.

Ako primijetite grešku u tekstu, označite je i pritisnite Ctrl+Enter



Slični članci

  • Teorijske osnove selekcije Proučavanje novog gradiva

    Predmet – biologija Čas – 9 „A“ i „B“ Trajanje – 40 minuta Nastavnik – Želovnikova Oksana Viktorovna Tema časa: „Genetičke osnove selekcije organizama“ Oblik nastavnog procesa: čas u učionici. Vrsta lekcije: lekcija o komuniciranju novih...

  • Divni Krai mlečni slatkiši "kremasti hir"

    Svi znaju kravlje bombone - proizvode se skoro stotinu godina. Njihova domovina je Poljska. Originalni kravlji je mekani karamela sa filom od fudža. Naravno, vremenom je originalna receptura pretrpjela promjene, a svaki proizvođač ima svoje...

  • Fenotip i faktori koji određuju njegovo formiranje

    Danas stručnjaci posebnu pažnju posvećuju fenotipologiji. Oni su u stanju da za nekoliko minuta “dođu do dna” osobe i ispričaju mnogo korisnih i zanimljivih informacija o njoj Osobitosti fenotipa Fenotip su sve karakteristike u cjelini,...

  • Genitiv množine bez završetka

    I. Glavni završetak imenica muškog roda je -ov/(-ov)-ev: pečurke, teret, direktori, rubovi, muzeji itd. Neke riječi imaju završetak -ey (stanovnici, učitelji, noževi) i nulti završetak (čizme, građani). 1. Kraj...

  • Crni kavijar: kako ga pravilno servirati i ukusno jesti

    Sastojci: Crni kavijar, prema vašim mogućnostima i budžetu (beluga, jesetra, jesetra ili drugi riblji kavijar falsifikovan kao crni) krekeri, beli hleb meki puter kuvana jaja svež krastavac Način pripreme: Dobar dan,...

  • Kako odrediti vrstu participa

    Značenje participa, njegove morfološke osobine i sintaktička funkcija Particip je poseban (nekonjugirani) oblik glagola, koji radnjom označava svojstvo objekta, odgovara na pitanje koji? (šta?) i kombinuje osobine.. .