Cât de groasă este atmosfera pământului? Atmosfera este învelișul de aer al Pământului. Propagarea undelor radio în ionosferă

10,045×103 J/(kg*K) (în intervalul de temperatură de la 0-100°C), C v 8,3710*103 J/(kg*K) (0-1500°C). Solubilitatea aerului în apă la 0°C este de 0,036%, la 25°C - 0,22%.

Compoziția atmosferică

Istoria formării atmosferice

Istoria timpurie

În prezent, știința nu poate urmări toate etapele formării Pământului cu o precizie sută la sută. Conform celei mai comune teorii, atmosfera Pământului a avut patru compoziții diferite de-a lungul timpului. Inițial, a constat din gaze ușoare (hidrogen și heliu) captate din spațiul interplanetar. Acesta este așa-numitul atmosfera primara. În etapa următoare, activitatea vulcanică activă a dus la saturarea atmosferei cu alte gaze decât hidrogenul (hidrocarburi, amoniac, vapori de apă). Așa s-a format atmosfera secundara. Această atmosferă era reconfortantă. În plus, procesul de formare a atmosferei a fost determinat de următorii factori:

  • scurgere constantă de hidrogen în spațiul interplanetar;
  • reacții chimice care apar în atmosferă sub influența radiațiilor ultraviolete, a descărcărilor de fulgere și a altor factori.

Treptat, acești factori au dus la formare atmosfera tertiara, caracterizată printr-un conținut mult mai scăzut de hidrogen și un conținut mult mai mare de azot și dioxid de carbon (format ca urmare a reacțiilor chimice din amoniac și hidrocarburi).

Apariția vieții și a oxigenului

Odată cu apariția organismelor vii pe Pământ ca urmare a fotosintezei, însoțită de eliberarea de oxigen și absorbția dioxidului de carbon, compoziția atmosferei a început să se schimbe. Există totuși date (analiza compoziției izotopice a oxigenului atmosferic și cea eliberată în timpul fotosintezei) care indică originea geologică a oxigenului atmosferic.

Inițial, oxigenul a fost cheltuit pentru oxidarea compușilor reduși - hidrocarburi, formă feroasă de fier conținută în oceane etc. La sfârșitul acestei etape, conținutul de oxigen din atmosferă a început să crească.

În anii 1990, au fost efectuate experimente pentru a crea un sistem ecologic închis („Biosfera 2”), timp în care nu a fost posibil să se creeze un sistem stabil cu o compoziție uniformă a aerului. Influența microorganismelor a dus la scăderea nivelului de oxigen și la creșterea cantității de dioxid de carbon.

Azot

Formarea unei cantități mari de N 2 se datorează oxidării atmosferei primare de amoniac-hidrogen cu O 2 molecular, care a început să iasă de la suprafața planetei ca urmare a fotosintezei, se presupune că acum aproximativ 3 miliarde de ani (conform la o altă versiune, oxigenul atmosferic este de origine geologică). Azotul este oxidat la NO în straturile superioare ale atmosferei, folosit în industrie și legat de bacteriile fixatoare de azot, în timp ce N2 este eliberat în atmosferă ca urmare a denitrificării nitraților și a altor compuși care conțin azot.

Azotul N 2 este un gaz inert și reacționează numai în condiții specifice (de exemplu, în timpul unei descărcări de fulgere). Cianobacteriile și unele bacterii (de exemplu, bacteriile nodulare care formează simbioză rizobială cu plantele leguminoase) o pot oxida și transforma în formă biologică.

Oxidarea azotului molecular prin descărcări electrice este utilizată în producția industrială de îngrășăminte cu azot și a dus, de asemenea, la formarea unor depozite unice de nitrați în deșertul Atacama din Chile.

gaze nobile

Arderea combustibilului este principala sursă de gaze poluante (CO, NO, SO2). Dioxidul de sulf este oxidat de aerul O 2 la SO 3 în straturile superioare ale atmosferei, care interacționează cu vaporii de H 2 O și NH 3, iar H 2 SO 4 și (NH 4) 2 SO 4 rezultate se întorc la suprafața Pământului. împreună cu precipitaţii. Utilizarea motoarelor cu ardere internă duce la o poluare semnificativă a atmosferei cu oxizi de azot, hidrocarburi și compuși de Pb.

Poluarea cu aerosoli a atmosferei este cauzată atât de cauze naturale (erupții vulcanice, furtuni de praf, transport de picături de apă de mare și particule de polen vegetal etc.), cât și de activități economice umane (exploatarea minereurilor și materialelor de construcție, arderea combustibilului, fabricarea cimentului etc.). .) . Eliberarea intensă la scară largă de particule în atmosferă este una dintre posibilele cauze ale schimbărilor climatice de pe planetă.

Structura atmosferei și caracteristicile cochiliilor individuale

Starea fizică a atmosferei este determinată de vreme și climă. Parametrii de bază ai atmosferei: densitatea aerului, presiunea, temperatura și compoziția. Pe măsură ce altitudinea crește, densitatea aerului și presiunea atmosferică scad. Temperatura se modifică, de asemenea, odată cu schimbările de altitudine. Structura verticală a atmosferei este caracterizată de temperaturi și proprietăți electrice diferite și de condiții diferite de aer. În funcție de temperatura din atmosferă, se disting următoarele straturi principale: troposferă, stratosferă, mezosferă, termosferă, exosferă (sfera de împrăștiere). Regiunile de tranziție ale atmosferei dintre cochiliile vecine se numesc tropopauză, stratopauză etc.

troposfera

Stratosferă

În stratosferă, cea mai mare parte a undelor scurte a radiației ultraviolete (180-200 nm) este reținută, iar energia undelor scurte este transformată. Sub influența acestor raze, câmpurile magnetice se modifică, moleculele se dezintegrează, are loc ionizarea și are loc o nouă formare de gaze și alți compuși chimici. Aceste procese pot fi observate sub formă de aurore boreale, fulgere și alte străluciri.

În stratosferă și în straturile superioare, sub influența radiației solare, moleculele de gaz se disociază în atomi (peste 80 km CO 2 și H 2 se disociază, peste 150 km - O 2, peste 300 km - H 2). La o altitudine de 100-400 km, ionizarea gazelor are loc și în ionosferă; la o altitudine de 320 km, concentrația particulelor încărcate (O + 2, O - 2, N + 2) este ~ 1/300 din concentrația de particule neutre. În straturile superioare ale atmosferei există radicali liberi - OH, HO 2 etc.

Aproape că nu există vapori de apă în stratosferă.

Mezosfera

Până la o altitudine de 100 km, atmosfera este un amestec omogen, bine amestecat de gaze. În straturile superioare, distribuția gazelor după înălțime depinde de greutățile moleculare ale acestora; concentrația de gaze mai grele scade mai repede cu distanța de la suprafața Pământului. Datorită scăderii densității gazului, temperatura scade de la 0°C în stratosferă la −110°C în mezosferă. Cu toate acestea, energia cinetică a particulelor individuale la altitudini de 200-250 km corespunde unei temperaturi de ~1500°C. Peste 200 km se observă fluctuații semnificative ale temperaturii și densității gazelor în timp și spațiu.

La o altitudine de aproximativ 2000-3000 km, exosfera se transformă treptat în așa-numitul vid din spațiul apropiat, care este umplut cu particule foarte rarefiate de gaz interplanetar, în principal atomi de hidrogen. Dar acest gaz reprezintă doar o parte din materia interplanetară. Cealaltă parte este formată din particule de praf de origine cometă și meteorică. Pe lângă aceste particule extrem de rarefiate, în acest spațiu pătrunde radiațiile electromagnetice și corpusculare de origine solară și galactică.

Troposfera reprezintă aproximativ 80% din masa atmosferei, stratosfera - aproximativ 20%; masa mezosferei nu este mai mare de 0,3%, termosfera este mai mică de 0,05% din masa totală a atmosferei. Pe baza proprietăților electrice din atmosferă, se disting neutronosfera și ionosfera. În prezent se crede că atmosfera se extinde până la o altitudine de 2000-3000 km.

În funcție de compoziția gazului din atmosferă, ele emit homosferăȘi heterosferă. Heterosferă- Aceasta este zona în care gravitația afectează separarea gazelor, deoarece amestecul lor la o astfel de altitudine este neglijabil. Aceasta implică o compoziție variabilă a heterosferei. Sub ea se află o parte bine amestecată, omogenă a atmosferei numită homosferă. Limita dintre aceste straturi se numește turbopauză, se află la o altitudine de aproximativ 120 km.

Proprietăți atmosferice

Deja la o altitudine de 5 km deasupra nivelului mării, o persoană neantrenată începe să se confrunte cu înfometarea de oxigen și, fără adaptare, performanța unei persoane este redusă semnificativ. Zona fiziologică a atmosferei se termină aici. Respirația omului devine imposibilă la o altitudine de 15 km, deși până la aproximativ 115 km atmosfera conține oxigen.

Atmosfera ne furnizează oxigenul necesar pentru respirație. Cu toate acestea, din cauza scăderii presiunii totale a atmosferei, pe măsură ce vă ridicați la altitudine, presiunea parțială a oxigenului scade în mod corespunzător.

Plămânii umani conțin în mod constant aproximativ 3 litri de aer alveolar. Presiunea parțială a oxigenului în aerul alveolar la presiunea atmosferică normală este de 110 mmHg. Art., presiunea dioxidului de carbon - 40 mm Hg. Art., iar vaporii de apă −47 mm Hg. Artă. Odată cu creșterea altitudinii, presiunea oxigenului scade, iar presiunea totală a vaporilor de apă și dioxid de carbon din plămâni rămâne aproape constantă - aproximativ 87 mm Hg. Artă. Furnizarea de oxigen a plămânilor se va opri complet atunci când presiunea aerului ambiant devine egală cu această valoare.

La o altitudine de aproximativ 19-20 km, presiunea atmosferică scade la 47 mm Hg. Artă. Prin urmare, la această altitudine, apa și lichidul interstițial încep să fiarbă în corpul uman. În afara cabinei presurizate la aceste altitudini, moartea are loc aproape instantaneu. Astfel, din punctul de vedere al fiziologiei umane, „spațiul” începe deja la o altitudine de 15-19 km.

Straturile dense de aer - troposfera și stratosfera - ne protejează de efectele dăunătoare ale radiațiilor. Cu suficientă rarefiere a aerului, la altitudini mai mari de 36 km, radiațiile ionizante - razele cosmice primare - au un efect intens asupra organismului; La altitudini de peste 40 km, partea ultravioletă a spectrului solar este periculoasă pentru oameni.

Planeta albastra...

Acest subiect ar fi trebuit să fie unul dintre primele apărute pe site. La urma urmei, elicopterele sunt aeronave atmosferice. Atmosfera Pământului– habitatul lor, ca să spunem așa:-). A proprietățile fizice ale aerului Tocmai asta determină calitatea acestui habitat :-). Adică acesta este unul dintre elementele de bază. Și ei scriu întotdeauna despre bază mai întâi. Dar mi-am dat seama de asta abia acum. Totuși, după cum știți, este mai bine mai târziu decât niciodată... Să atingem această problemă, fără a intra în buruieni și complicații inutile :-).

Asa de… Atmosfera Pământului. Aceasta este învelișul gazos al planetei noastre albastre. Toată lumea știe acest nume. De ce albastru? Pur și simplu pentru că componenta „albastru” (precum și albastru și violet) a luminii solare (spectrul) este cel mai bine împrăștiată în atmosferă, colorându-l astfel albăstrui-albăstrui, uneori cu o nuanță de violet (într-o zi însorită, desigur :-)) .

Compoziția atmosferei Pământului.

Compoziția atmosferei este destul de largă. Nu voi enumera toate componentele din text, există o ilustrare bună pentru aceasta. Compoziția tuturor acestor gaze este aproape constantă, cu excepția dioxidului de carbon (CO 2 ). În plus, atmosfera conține în mod necesar apă sub formă de vapori, picături în suspensie sau cristale de gheață. Cantitatea de apă nu este constantă și depinde de temperatură și, într-o măsură mai mică, de presiunea aerului. În plus, atmosfera Pământului (în special cea actuală) conține o anumită cantitate de, aș spune, „tot felul de lucruri urâte” :-). Acestea sunt SO 2, NH 3, CO, HCl, NO, în plus există vapori de mercur Hg. Adevărat, toate acestea sunt acolo în cantități mici, slavă Domnului :-).

Atmosfera Pământului Se obișnuiește să-l împarți în mai multe zone succesive în înălțime deasupra suprafeței.

Prima, cea mai apropiată de pământ, este troposfera. Acesta este cel mai de jos și, ca să spunem așa, stratul principal pentru activitățile de viață de diferite tipuri. Conține 80% din masa întregului aer atmosferic (deși în volum este doar aproximativ 1% din întreaga atmosferă) și aproximativ 90% din toată apa atmosferică. Cea mai mare parte a vântului, norilor, ploii și zăpezii 🙂 provin de acolo. Troposfera se extinde la altitudini de aproximativ 18 km la latitudini tropicale și până la 10 km la latitudini polare. Temperatura aerului din acesta scade odată cu creșterea înălțimii cu aproximativ 0,65 ° C la fiecare 100 m.

Zonele atmosferice.

Zona a doua - stratosferă. Trebuie spus că între troposferă și stratosferă există o altă zonă îngustă - tropopauza. Oprește scăderea temperaturii odată cu înălțimea. Tropopauza are o grosime medie de 1,5-2 km, dar limitele sale sunt neclare, iar troposfera se suprapune adesea cu stratosfera.

Deci stratosfera are o înălțime medie de 12 km până la 50 km. Temperatura din el rămâne neschimbată până la 25 km (aproximativ -57ºС), apoi undeva până la 40 km se ridică la aproximativ 0ºС și apoi rămâne neschimbată până la 50 km. Stratosfera este o parte relativ calmă a atmosferei pământului. Practic nu există condiții meteorologice nefavorabile în el. În stratosferă se află celebrul strat de ozon la altitudini de la 15-20 km până la 55-60 km.

Acesta este urmat de un mic strat limită, stratopauza, în care temperatura rămâne în jurul valorii de 0ºC, iar apoi zona următoare este mezosfera. Se extinde la altitudini de 80-90 km, iar în el temperatura scade la aproximativ 80ºC. În mezosferă, de obicei devin vizibili meteoriți mici, care încep să strălucească în ea și să ard acolo sus.

Următorul interval îngust este mezopauza și dincolo de ea zona termosferei. Înălțimea sa este de până la 700-800 km. Aici temperatura începe să crească din nou și la altitudini de aproximativ 300 km pot atinge valori de ordinul a 1200ºС. Apoi rămâne constantă. În interiorul termosferei, până la o altitudine de aproximativ 400 km, se află ionosfera. Aici aerul este puternic ionizat din cauza expunerii la radiația solară și are o conductivitate electrică ridicată.

Următoarea și, în general, ultima zonă este exosfera. Aceasta este așa-numita zonă de împrăștiere. Aici, există în principal hidrogen și heliu foarte rarefiat (cu o predominanță a hidrogenului). La altitudini de aproximativ 3000 km, exosfera trece în vidul spațial apropiat.

Ceva de genul. De ce aproximativ? Pentru că aceste straturi sunt destul de convenționale. Sunt posibile diferite modificări ale altitudinii, compoziției gazelor, apei, temperaturii, ionizării și așa mai departe. În plus, există mult mai mulți termeni care definesc structura și starea atmosferei pământului.

De exemplu, homosferă și heterosferă. În primul, gazele atmosferice sunt bine amestecate și compoziția lor este destul de omogenă. Al doilea este situat deasupra primului și practic nu există o astfel de amestecare acolo. Gazele din el sunt separate prin gravitație. Limita dintre aceste straturi este situată la o altitudine de 120 km și se numește turbopauză.

Să terminăm cu termenii, dar cu siguranță voi adăuga că este convențional acceptat că limita atmosferei este situată la o altitudine de 100 km deasupra nivelului mării. Această graniță se numește Linia Karman.

Voi adăuga încă două imagini pentru a ilustra structura atmosferei. Prima, insa, este in germana, dar este completa si destul de usor de inteles :-). Poate fi mărită și văzută clar. Al doilea arată schimbarea temperaturii atmosferice cu altitudinea.

Structura atmosferei Pământului.

Temperatura aerului se modifică odată cu altitudinea.

Navele spațiale orbitale moderne cu echipaj zboară la altitudini de aproximativ 300-400 km. Totuși, aceasta nu mai este aviație, deși zona, desigur, este strâns legată într-un anume sens și despre asta cu siguranță vom vorbi mai târziu :-).

Zona de aviație este troposfera. Avioanele moderne atmosferice pot zbura și în straturile inferioare ale stratosferei. De exemplu, plafonul practic al MIG-25RB este de 23.000 m.

Zbor în stratosferă.

Și exact proprietățile fizice ale aerului Troposfera determină cum va fi zborul, cât de eficient va fi sistemul de control al aeronavei, cum îl vor afecta turbulențele din atmosferă și cum vor funcționa motoarele.

Prima proprietate principală este temperatura aerului. În dinamica gazelor, acesta poate fi determinat pe scara Celsius sau pe scara Kelvin.

Temperatura t 1 la o înălțime dată N pe scara Celsius este determinată de:

t1 = t - 6,5N, Unde t– temperatura aerului în apropierea solului.

Se numește temperatura pe scara Kelvin temperatura absolută, zero pe această scară este zero absolut. La zero absolut, mișcarea termică a moleculelor se oprește. Zero absolut pe scara Kelvin corespunde cu -273º pe scara Celsius.

În consecință, temperatura T la inaltime N pe scara Kelvin este determinată de:

T = 273K + t-6,5H

Presiunea aerului. Presiunea atmosferică se măsoară în pascali (N/m2), în vechiul sistem de măsurare în atmosfere (atm.). Există, de asemenea, presiunea barometrică. Aceasta este presiunea măsurată în milimetri de mercur folosind un barometru cu mercur. Presiunea barometrică (presiune la nivelul mării) egală cu 760 mmHg. Artă. numit standard. La fizica 1 atm. exact egal cu 760 mm Hg.

Densitatea aerului. În aerodinamică, conceptul cel mai des folosit este densitatea masei aerului. Aceasta este masa de aer în 1 m3 de volum. Densitatea aerului se modifică odată cu altitudinea, aerul devine mai rarefiat.

Umiditatea aerului. Afișează cantitatea de apă din aer. Există un concept" umiditate relativă" Acesta este raportul dintre masa vaporilor de apă și maximul posibil la o anumită temperatură. Conceptul de 0%, adică atunci când aerul este complet uscat, poate exista doar în laborator. Pe de altă parte, 100% umiditate este destul de posibilă. Aceasta înseamnă că aerul a absorbit toată apa pe care ar putea-o absorbi. Ceva de genul unui „burete complet”. Umiditatea relativă ridicată reduce densitatea aerului, în timp ce umiditatea relativă scăzută o crește.

Datorită faptului că zborurile cu aeronave au loc în condiții atmosferice diferite, parametrii lor de zbor și aerodinamici în același mod de zbor pot fi diferiți. Prin urmare, pentru a estima corect acești parametri, am introdus Atmosferă standard internațională (ISA). Arată schimbarea stării aerului odată cu creșterea altitudinii.

Parametrii de bază ai condiției aerului la umiditate zero sunt luați după cum urmează:

presiunea P = 760 mm Hg. Artă. (101,3 kPa);

temperatura t = +15°C (288 K);

densitatea masei ρ = ​​1,225 kg/m 3 ;

Pentru ISA se acceptă (cum s-a menționat mai sus :-)) că temperatura scade în troposferă cu 0,65º pentru fiecare 100 de metri de altitudine.

Atmosferă standard (de exemplu până la 10.000 m).

Tabelele MSA sunt folosite pentru calibrarea instrumentelor, precum și pentru calcule de navigație și inginerie.

Proprietățile fizice ale aerului include, de asemenea, concepte precum inerția, vâscozitatea și compresibilitatea.

Inerția este o proprietate a aerului care îi caracterizează capacitatea de a rezista modificărilor stării sale de repaus sau mișcării liniare uniforme. . O măsură a inerției este densitatea masei aerului. Cu cât este mai mare, cu atât este mai mare forța de inerție și rezistență a mediului atunci când aeronava se deplasează în el.

Viscozitate Determină rezistența la frecarea aerului atunci când aeronava este în mișcare.

Compresibilitatea determină modificarea densității aerului cu modificările presiunii. La viteze mici ale aeronavei (până la 450 km/h), nu există nicio modificare a presiunii atunci când fluxul de aer curge în jurul acesteia, dar la viteze mari începe să apară efectul de compresibilitate. Influența sa este vizibilă mai ales la viteze supersonice. Aceasta este o zonă separată de aerodinamică și un subiect pentru un articol separat :-).

Ei bine, asta pare a fi tot deocamdata... E timpul sa terminam aceasta enumerare usor plictisitoare, care insa nu poate fi evitata :-). Atmosfera Pământului, parametrii săi, proprietățile fizice ale aerului sunt la fel de importanți pentru aeronavă ca și parametrii dispozitivului în sine și nu pot fi ignorați.

Pa, până la următoarele întâlniri și subiecte mai interesante :) ...

P.S. Pentru desert, vă sugerez să vizionați un videoclip filmat din cabina unui geamăn MIG-25PU în timpul zborului său în stratosferă. Se pare ca a fost filmat de un turist care are bani pentru astfel de zboruri :-). În mare parte, totul a fost filmat prin parbriz. Atentie la culoarea cerului...

Structura și compoziția atmosferei Pământului, trebuie spus, nu au fost întotdeauna valori constante într-una sau alta perioadă a dezvoltării planetei noastre. Astăzi, structura verticală a acestui element, care are o „grosime” totală de 1,5-2,0 mii km, este reprezentată de mai multe straturi principale, inclusiv:

  1. troposfera.
  2. Tropopauza.
  3. Stratosferă.
  4. Stratopauza.
  5. Mezosfera și mezopauza.
  6. Termosferă.
  7. Exosfera.

Elemente de bază ale atmosferei

Troposfera este un strat în care se observă mișcări puternice verticale și orizontale; aici se formează vremea, fenomenele sedimentare și condițiile climatice. Se întinde la 7-8 kilometri de la suprafața planetei aproape peste tot, cu excepția regiunilor polare (până la 15 km acolo). În troposferă, are loc o scădere treptată a temperaturii, cu aproximativ 6,4 ° C cu fiecare kilometru de altitudine. Acest indicator poate diferi pentru diferite latitudini și anotimpuri.

Compoziția atmosferei Pământului în această parte este reprezentată de următoarele elemente și procentele acestora:

Azot - aproximativ 78 la sută;

Oxigen - aproape 21 la sută;

Argon - aproximativ un procent;

Dioxid de carbon - mai puțin de 0,05%.

Compoziție unică până la o altitudine de 90 de kilometri

În plus, aici puteți găsi praf, picături de apă, vapori de apă, produse de combustie, cristale de gheață, săruri marine, multe particule de aerosoli etc. Această compoziție a atmosferei Pământului se observă până la aproximativ nouăzeci de kilometri în altitudine, astfel încât aerul este aproximativ la fel ca compoziție chimică, nu numai în troposferă, ci și în straturile de deasupra. Dar acolo atmosfera are proprietăți fizice fundamental diferite. Stratul care are o compoziție chimică generală se numește homosferă.

Ce alte elemente alcătuiesc atmosfera Pământului? În procente (în volum, în aer uscat) gaze precum kripton (aproximativ 1,14 x 10 -4), xenon (8,7 x 10 -7), hidrogen (5,0 x 10 -5), metan (aproximativ 1,7 x 10 -5) sunt reprezentate aici. 4), protoxid de azot (5,0 x 10 -5) etc. Ca procent din masă, cele mai multe dintre componentele enumerate sunt protoxid de azot și hidrogen, urmate de heliu, cripton etc.

Proprietățile fizice ale diferitelor straturi atmosferice

Proprietățile fizice ale troposferei sunt strâns legate de apropierea acesteia de suprafața planetei. De aici, căldura solară reflectată sub formă de raze infraroșii este îndreptată înapoi în sus, implicând procesele de conducție și convecție. De aceea temperatura scade odată cu distanța de la suprafața pământului. Acest fenomen se observă până la înălțimea stratosferei (11-17 kilometri), apoi temperatura devine aproape neschimbată până la 34-35 km, iar apoi temperatura crește din nou la altitudini de 50 de kilometri (limita superioară a stratosferei) . Între stratosferă și troposferă există un strat intermediar subțire al tropopauzei (până la 1-2 km), unde se observă temperaturi constante deasupra ecuatorului - aproximativ minus 70 ° C și mai jos. Deasupra polilor, tropopauza „se încălzește” vara la minus 45°C; iarna, temperaturile aici fluctuează în jurul valorii de -65°C.

Compoziția gazoasă a atmosferei Pământului include un element atât de important precum ozonul. Există relativ puțin din el la suprafață (zece până la minus a șasea putere de unu la sută), deoarece gazul se formează sub influența luminii solare din oxigenul atomic în părțile superioare ale atmosferei. În special, cel mai mult ozon se află la o altitudine de aproximativ 25 km, iar întregul „ecran de ozon” este situat în zone de la 7-8 km la poli, de la 18 km la ecuator și până la cincizeci de kilometri în total deasupra suprafata planetei.

Atmosfera protejează de radiațiile solare

Compoziția aerului din atmosfera Pământului joacă un rol foarte important în conservarea vieții, deoarece elementele și compozițiile chimice individuale limitează cu succes accesul radiațiilor solare la suprafața pământului și a oamenilor, animalelor și plantelor care trăiesc pe aceasta. De exemplu, moleculele de vapori de apă absorb în mod eficient aproape toate intervalele de radiații infraroșii, cu excepția lungimii în intervalul de la 8 la 13 microni. Ozonul absoarbe radiația ultravioletă până la o lungime de undă de 3100 A. Fără stratul său subțire (doar 3 mm în medie dacă este plasat pe suprafața planetei), doar apă la o adâncime mai mare de 10 metri și peșteri subterane unde radiația solară nu raza poate fi locuita..

Zero Celsius la stratopauză

Între următoarele două niveluri ale atmosferei, stratosferă și mezosferă, există un strat remarcabil - stratopauza. Aproximativ corespunde înălțimii maximelor de ozon și temperatura de aici este relativ confortabilă pentru oameni - aproximativ 0°C. Deasupra stratopauzei, în mezosferă (începe undeva la o altitudine de 50 km și se termină la o altitudine de 80-90 km), se observă din nou o scădere a temperaturii odată cu creșterea distanței de la suprafața Pământului (până la minus 70-80 ° C). ). Meteorii ard de obicei complet în mezosferă.

În termosferă - plus 2000 K!

Compoziția chimică a atmosferei Pământului în termosferă (începe după mezopauză de la altitudini de aproximativ 85-90 până la 800 km) determină posibilitatea unui astfel de fenomen precum încălzirea treptată a straturilor de „aer” foarte rarefiat sub influența radiației solare. . În această parte a „păturii de aer” a planetei, temperaturile variază de la 200 la 2000 K, care sunt obținute datorită ionizării oxigenului (oxigenul atomic este situat peste 300 km), precum și recombinării atomilor de oxigen în molecule. , însoțită de degajarea unei cantități mari de căldură. Termosfera este locul unde apar aurorele.

Deasupra termosferei se află exosfera - stratul exterior al atmosferei, din care atomii de hidrogen ușori și care se mișcă rapid pot scăpa în spațiul cosmic. Compoziția chimică a atmosferei Pământului aici este reprezentată în mare parte de atomi individuali de oxigen în straturile inferioare, atomi de heliu în straturile mijlocii și aproape exclusiv atomi de hidrogen în straturile superioare. Aici predomină temperaturile ridicate - aproximativ 3000 K și nu există presiune atmosferică.

Cum s-a format atmosfera pământului?

Dar, așa cum am menționat mai sus, planeta nu a avut întotdeauna o astfel de compoziție atmosferică. În total, există trei concepte despre originea acestui element. Prima ipoteză sugerează că atmosfera a fost luată prin procesul de acumulare dintr-un nor protoplanetar. Cu toate acestea, astăzi această teorie este supusă unor critici semnificative, deoarece o astfel de atmosferă primară ar fi trebuit să fie distrusă de „vântul” solar de la o stea din sistemul nostru planetar. În plus, se presupune că elementele volatile nu au putut fi reținute în zona de formare a planetelor terestre din cauza temperaturilor prea ridicate.

Compoziția atmosferei primare a Pământului, așa cum sugerează cea de-a doua ipoteză, s-ar fi putut forma din cauza bombardării active a suprafeței de către asteroizi și comete care au sosit din vecinătatea sistemului solar în primele stadii de dezvoltare. Este destul de dificil să confirmi sau să infirmi acest concept.

Experiment la IDG RAS

Cea mai plauzibilă pare să fie a treia ipoteză, care crede că atmosfera a apărut ca urmare a eliberării de gaze din mantaua scoarței terestre cu aproximativ 4 miliarde de ani în urmă. Acest concept a fost testat la Institutul de Geografie al Academiei Ruse de Științe în timpul unui experiment numit „Tsarev 2”, când o probă dintr-o substanță de origine meteorică a fost încălzită în vid. Apoi a fost înregistrată eliberarea de gaze precum H 2, CH 4, CO, H 2 O, N 2 etc.. Prin urmare, oamenii de știință au presupus pe bună dreptate că compoziția chimică a atmosferei primare a Pământului include apă și dioxid de carbon, fluorură de hidrogen ( HF), monoxid de carbon gazos (CO), hidrogen sulfurat (H 2 S), compuși de azot, hidrogen, metan (CH 4), vapori de amoniac (NH 3), argon etc. La formare au participat vaporii de apă din atmosfera primară. al hidrosferei, dioxidul de carbon a fost într-o mai mare măsură în stare legată în substanțele organice și roci, azotul a trecut în compoziția aerului modern și, de asemenea, din nou în roci sedimentare și substanțe organice.

Compoziția atmosferei primare a Pământului nu ar permite oamenilor moderni să se afle în ea fără aparate de respirație, deoarece atunci nu exista oxigen în cantitățile necesare. Acest element a apărut în cantități semnificative în urmă cu un miliard și jumătate de ani, despre care se crede că este în legătură cu dezvoltarea procesului de fotosinteză în alge albastru-verde și alte alge, care sunt cei mai vechi locuitori ai planetei noastre.

Oxigen minim

Faptul că compoziția atmosferei Pământului a fost inițial aproape lipsită de oxigen este indicat de faptul că grafitul (carbonul) ușor oxidat, dar nu oxidat, se găsește în cele mai vechi roci (catarheene). Ulterior, au apărut așa-numitele minereuri de fier cu bandă, care au inclus straturi de oxizi de fier îmbogățiți, ceea ce înseamnă apariția pe planetă a unei puternice surse de oxigen sub formă moleculară. Dar aceste elemente au fost găsite doar periodic (poate că aceleași alge sau alți producători de oxigen au apărut în mici insule dintr-un deșert anoxic), în timp ce restul lumii era anaerob. Acesta din urmă este susținut de faptul că pirita ușor oxidată a fost găsită sub formă de pietricele prelucrate prin curgere fără urme de reacții chimice. Deoarece apele curgătoare nu pot fi aerate slab, s-a dezvoltat punctul de vedere că atmosfera dinaintea Cambrianului conținea mai puțin de unu la sută din compoziția de oxigen de astăzi.

Schimbare revoluționară în compoziția aerului

Aproximativ la mijlocul Proterozoicului (acum 1,8 miliarde de ani), a avut loc o „revoluție a oxigenului” atunci când lumea a trecut la respirația aerobă, în timpul căreia 38 pot fi obținute dintr-o moleculă de nutrient (glucoză) și nu două (ca în cazul respiraţie anaerobă) unităţi de energie. Compoziția atmosferei Pământului, în ceea ce privește oxigenul, a început să depășească un procent din ceea ce este astăzi și a început să apară un strat de ozon, care protejează organismele de radiații. De la ea, de exemplu, animale străvechi precum trilobiții „s-au ascuns” sub scoici groase. De atunci și până în epoca noastră, conținutul principalului element „respirator” a crescut treptat și lent, asigurând diversitatea dezvoltării formelor de viață de pe planetă.

Învelișul de aer care înconjoară planeta noastră și se rotește cu ea se numește atmosferă. Jumătate din masa totală a atmosferei este concentrată în cei 5 km inferiori, iar trei sferturi din masă se află în cei 10 km inferiori. Mai sus, aerul este semnificativ rarefiat, deși particulele sale se găsesc la o altitudine de 2000-3000 km deasupra suprafeței pământului.

Aerul pe care îl respirăm este un amestec de gaze. Cel mai mult conține azot - 78% și oxigen - 21%. Argonul reprezintă mai puțin de 1% și 0,03% este dioxid de carbon. Numeroase alte gaze, cum ar fi criptonul, xenonul, neonul, heliul, hidrogenul, ozonul și altele, formează miimi și milionatimi de procent. Aerul mai conține vapori de apă, particule de diferite substanțe, bacterii, polen și praf cosmic.

Atmosfera este formată din mai multe straturi. Stratul inferior până la o înălțime de 10-15 km deasupra suprafeței Pământului se numește troposferă. Este încălzit de Pământ, astfel încât temperatura aerului de aici scade cu 6 °C cu înălțimea la 1 kilometru de creștere. Troposfera contine aproape toti vaporii de apa si se formeaza aproape toti norii - aprox.Inaltimea troposferei la diferite latitudini ale planetei nu este aceeasi. Peste poli se ridică la 9 km, peste latitudini temperate - până la 10-12 km, iar deasupra ecuatorului - până la 15 km. Procesele care au loc în troposferă - formarea și mișcarea maselor de aer, formarea ciclonilor și anticiclonilor, apariția norilor și precipitațiilor - determină vremea și clima de la suprafața pământului.


Deasupra troposferei se află stratosfera, care se întinde până la 50-55 km. Troposfera și stratosfera sunt separate printr-un strat de tranziție, tropopauza, de 1-2 km grosime. În stratosferă, la o altitudine de aproximativ 25 km, temperatura aerului începe treptat să crească și la 50 km ajunge la + 10 +30 °C. Această creștere a temperaturii se datorează faptului că în stratosferă există un strat de ozon la altitudini de 25-30 km. La suprafața Pământului, conținutul său în aer este neglijabil, iar la altitudini mari, moleculele de oxigen diatomic absorb radiația solară ultravioletă, formând molecule triatomice de ozon.

Dacă ozonul ar fi localizat în straturile inferioare ale atmosferei, la o înălțime cu presiune normală, grosimea stratului său ar fi de doar 3 mm. Dar chiar și într-o cantitate atât de mică joacă un rol foarte important: absoarbe o parte din radiația solară dăunătoare organismelor vii.

Deasupra stratosferei, mezosfera se extinde la aproximativ o altitudine de 80 km, în care temperatura aerului scade odată cu înălțimea la câteva zeci de grade sub zero.

Partea superioară a atmosferei este caracterizată de temperaturi foarte ridicate și se numește termosferă - cca. Este împărțită în două părți - ionosfera - până la o altitudine de aproximativ 1000 km, unde aerul este puternic ionizat, iar exosfera - peste 1000 km. În ionosferă, moleculele de gaze atmosferice absorb radiația ultravioletă de la Soare, rezultând formarea de atomi încărcați și electroni liberi. Aurorele sunt observate în ionosferă.

Atmosfera joacă un rol foarte important în viața planetei noastre. Protejează Pământul de încălzirea puternică de către razele soarelui în timpul zilei și de hipotermie noaptea. Majoritatea meteoriților ard în straturile atmosferice înainte de a ajunge la suprafața planetei. Atmosfera conține oxigen, necesar tuturor organismelor, un scut de ozon care protejează viața de pe Pământ de partea dăunătoare a radiației ultraviolete a Soarelui.


ATMOSFERELE PLANETELOR SISTEMULUI SOLAR

Atmosfera lui Mercur este atât de rarefiată încât se poate spune că este practic inexistentă. Învelișul de aer al lui Venus este format din dioxid de carbon (96%) și azot (aproximativ 4%), este foarte dens - presiunea atmosferică la suprafața planetei este de aproape 100 de ori mai mare decât pe Pământ. Atmosfera marțiană este formată, de asemenea, predominant din dioxid de carbon (95%) și azot (2,7%), dar densitatea sa este de aproximativ 300 de ori mai mică decât cea a Pământului, iar presiunea sa este de aproape 100 de ori mai mică. Suprafața vizibilă a lui Jupiter este de fapt stratul superior al atmosferei hidrogen-heliu. Compoziția cochiliilor de aer ale lui Saturn și Uranus este aceeași. Frumoasa culoare albastră a lui Uranus se datorează concentrației mari de metan din partea superioară a atmosferei sale - aproximativ Neptun, învăluit într-o ceață de hidrocarburi, are două straturi principale de nori: unul format din cristale de metan înghețat, iar al doilea, situat dedesubt, conținând amoniac și hidrogen sulfurat.

Structura atmosferei Pământului

Atmosfera este învelișul gazos al Pământului cu particulele de aerosoli pe care le conține, mișcându-se împreună cu Pământul în spațiu ca un întreg și participând în același timp la rotația Pământului. Cea mai mare parte a vieții noastre se desfășoară în fundul atmosferei.

Aproape toate planetele sistemului nostru solar au propriile atmosfere, dar numai atmosfera pământului este capabilă să susțină viața.

Când planeta noastră s-a format acum 4,5 miliarde de ani, se pare că era lipsită de atmosferă. Atmosfera s-a format ca urmare a emisiilor vulcanice de vapori de apă amestecați cu dioxid de carbon, azot și alte substanțe chimice din interiorul tinerei planete. Dar atmosfera poate conține o cantitate limitată de umiditate, astfel încât excesul ei ca urmare a condensului a dat naștere oceanelor. Dar atunci atmosfera era lipsită de oxigen. Primele organisme vii care au apărut și s-au dezvoltat în ocean, ca urmare a reacției de fotosinteză (H 2 O + CO 2 = CH 2 O + O 2), au început să elibereze mici porțiuni de oxigen, care au început să intre în atmosferă.

Formarea oxigenului în atmosfera Pământului a dus la formarea stratului de ozon la altitudini de aproximativ 8 – 30 km. Și, astfel, planeta noastră a dobândit protecție împotriva efectelor nocive ale studiului ultraviolet. Această împrejurare a servit drept imbold pentru evoluția ulterioară a formelor de viață pe Pământ, deoarece Ca urmare a creșterii fotosintezei, cantitatea de oxigen din atmosferă a început să crească rapid, ceea ce a contribuit la formarea și menținerea formelor de viață, inclusiv pe uscat.

Astăzi, atmosfera noastră este formată din 78,1% azot, 21% oxigen, 0,9% argon și 0,04% dioxid de carbon. Fracțiuni foarte mici în comparație cu gazele principale sunt neonul, heliul, metanul și criptonul.

Particulele de gaz conținute în atmosferă sunt afectate de forța gravitațională a Pământului. Și, având în vedere că aerul este compresibil, densitatea lui scade treptat odată cu înălțimea, trecând în spațiul exterior fără o limită clară. Jumătate din masa totală a atmosferei terestre este concentrată în cei 5 km inferiori, trei sferturi în cei 10 km inferiori, nouă zecimi în cei 20 km inferiori. 99% din masa atmosferei Pământului este concentrată sub o altitudine de 30 km, ceea ce reprezintă doar 0,5% din raza ecuatorială a planetei noastre.

La nivelul mării, numărul de atomi și molecule pe centimetru cub de aer este de aproximativ 2 * 10 19, la o altitudine de 600 km doar 2 * 10 7. La nivelul mării, un atom sau o moleculă călătorește aproximativ 7 * 10 -6 cm înainte de a se ciocni cu o altă particulă. La o altitudine de 600 km aceasta distanta este de aproximativ 10 km. Și la nivelul mării, aproximativ 7 * 10 9 astfel de coliziuni apar în fiecare secundă, la o altitudine de 600 km - doar aproximativ una pe minut!

Dar nu numai presiunea se schimbă odată cu altitudinea. Se schimbă și temperatura. De exemplu, la poalele unui munte înalt poate fi destul de cald, în timp ce vârful muntelui este acoperit de zăpadă și temperatura de acolo este în același timp sub zero. Și dacă luați un avion la o altitudine de aproximativ 10-11 km, puteți auzi un mesaj că afară sunt -50 de grade, în timp ce la suprafața pământului este cu 60-70 de grade mai cald...

Inițial, oamenii de știință au presupus că temperatura scade odată cu înălțimea până când ajunge la zero absolut (-273,16°C). Dar asta nu este adevărat.

Atmosfera Pământului este formată din patru straturi: troposferă, stratosferă, mezosferă, ionosferă (termosferă). Această împărțire în straturi a fost adoptată și pe baza datelor privind schimbările de temperatură cu înălțimea. Stratul cel mai de jos, unde temperatura aerului scade odată cu înălțimea, se numește troposferă. Stratul de deasupra troposferei, unde scăderea temperaturii se oprește, este înlocuit cu izotermă, iar în final temperatura începe să crească, se numește stratosferă. Stratul de deasupra stratosferei în care temperatura scade din nou rapid este mezosfera. Și în cele din urmă, stratul în care temperatura începe să crească din nou se numește ionosferă sau termosferă.

Troposfera se extinde în medie până la cei 12 km inferioare. Aici se formează vremea noastră. Cei mai înalți nori (cirrus) se formează în straturile superioare ale troposferei. Temperatura din troposferă scade adiabatic cu înălțimea, adică. Schimbarea temperaturii se produce ca urmare a scaderii presiunii cu inaltimea. Profilul de temperatură al troposferei este determinat în mare măsură de radiația solară care ajunge la suprafața Pământului. Ca urmare a încălzirii suprafeței Pământului de către Soare, se formează fluxuri convective și turbulente, îndreptate în sus, care formează vremea. Este de remarcat faptul că influența suprafeței subiacente asupra straturilor inferioare ale troposferei se extinde până la o înălțime de aproximativ 1,5 km. Desigur, excluzând zonele muntoase.

Limita superioară a troposferei este tropopauza - un strat izoterm. Luați în considerare aspectul caracteristic al norilor de tunete, al căror vârf este o „explozie” de nori cirus numită „nicovală”. Această „nicovală” doar „se răspândește” sub tropopauză, pentru că din cauza izotermei, curenții de aer ascendenți sunt slăbiți semnificativ, iar norul încetează să se dezvolte pe verticală. Dar în cazuri speciale, rare, vârfurile norilor cumulonimbus pot invada straturile inferioare ale stratosferei, rupând tropopauza.

Înălțimea tropopauzei depinde de latitudine. Astfel, la ecuator se află la o altitudine de aproximativ 16 km, iar temperatura sa este de aproximativ –80°C. La poli, tropopauza este situată mai jos, la aproximativ 8 km altitudine. Vara temperatura aici este de –40°C, iar iarna –60°C. Astfel, în ciuda temperaturilor mai ridicate la suprafața Pământului, tropopauza tropicală este mult mai rece decât la poli.



Articole similare