Нарастваща аритметична прогресия на формулата. Аритметична прогресия чрез примери

Ако всяко естествено число н съответства на реално число a n , тогава те казват, че дадено числова последователност :

а 1 , а 2 , а 3 , . . . , a n , . . . .

И така, числовата последователност е функция на естествен аргумент.

Номер а 1 Наречен първия член на редицата , номер а 2 вторият член на редицата , номер а 3 трети и така нататък. Номер a n Наречен n-ти член на редицата , и естественото число нномера му .

От два съседни члена a n И a n +1 членни последователности a n +1 Наречен последващи (към a n ), А a n предишен (към a n +1 ).

За да посочите последователност, трябва да посочите метод, който ви позволява да намерите член на последователност с произволен номер.

Често последователността се дава с n-ти член формули , тоест формула, която ви позволява да определите член на последователност по неговия номер.

Например,

последователността от положителни нечетни числа може да бъде дадена с формулата

a n= 2н- 1,

и последователността на редуване 1 И -1 - формула

bн = (-1)н +1 .

Последователността може да се определи повтаряща се формула, това е формула, която изразява всеки член на последователността, започвайки с някои, през предходните (един или повече) членове.

Например,

Ако а 1 = 1 , А a n +1 = a n + 5

а 1 = 1,

а 2 = а 1 + 5 = 1 + 5 = 6,

а 3 = а 2 + 5 = 6 + 5 = 11,

а 4 = а 3 + 5 = 11 + 5 = 16,

а 5 = а 4 + 5 = 16 + 5 = 21.

Ако а 1= 1, а 2 = 1, a n +2 = a n + a n +1 , тогава първите седем члена на числовата последователност са зададени както следва:

а 1 = 1,

а 2 = 1,

а 3 = а 1 + а 2 = 1 + 1 = 2,

а 4 = а 2 + а 3 = 1 + 2 = 3,

а 5 = а 3 + а 4 = 2 + 3 = 5,

а 6 = а 4 + а 5 = 3 + 5 = 8,

а 7 = а 5 + а 6 = 5 + 8 = 13.

Последователностите могат да бъдат финал И безкраен .

Последователността се нарича крайна ако има краен брой членове. Последователността се нарича безкраен ако има безкрайно много членове.

Например,

поредица от двуцифрени естествени числа:

10, 11, 12, 13, . . . , 98, 99

финал.

Поредица от прости числа:

2, 3, 5, 7, 11, 13, . . .

безкраен.

Последователността се нарича повишаване на , ако всеки от неговите членове, започвайки от втория, е по-голям от предходния.

Последователността се нарича намаляващ , ако всеки от неговите членове, започвайки от втория, е по-малък от предходния.

Например,

2, 4, 6, 8, . . . , 2н, . . . е възходяща последователност;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /н, . . . е низходяща последователност.

Нарича се последователност, чиито елементи не намаляват с увеличаване на броя или, обратно, не се увеличават монотонна последователност .

Монотонните последователности, по-специално, са нарастващи последователности и намаляващи последователности.

Аритметична прогресия

Аритметична прогресия извиква се редица, всеки член на която, започвайки от втория, е равен на предходния, към който се добавя същото число.

а 1 , а 2 , а 3 , . . . , a n, . . .

е аритметична прогресия, ако за всяко естествено число н условието е изпълнено:

a n +1 = a n + д,

Където д - някакво число.

По този начин разликата между следващите и предходните членове на дадена аритметична прогресия е винаги постоянна:

а 2 - а 1 = а 3 - а 2 = . . . = a n +1 - a n = д.

Номер д Наречен разликата на аритметична прогресия.

За да зададете аритметична прогресия, достатъчно е да посочите нейния първи член и разлика.

Например,

Ако а 1 = 3, д = 4 , тогава първите пет члена на редицата се намират, както следва:

а 1 =3,

а 2 = а 1 + д = 3 + 4 = 7,

а 3 = а 2 + д= 7 + 4 = 11,

а 4 = а 3 + д= 11 + 4 = 15,

а 5 = а 4 + д= 15 + 4 = 19.

За аритметична прогресия с първия член а 1 и разлика д нея н

a n = а 1 + (н- 1)д.

Например,

намерете тридесетия член на аритметичната прогресия

1, 4, 7, 10, . . .

а 1 =1, д = 3,

а 30 = а 1 + (30 - 1)d= 1 + 29· 3 = 88.

n-1 = а 1 + (н- 2)д,

a n= а 1 + (н- 1)д,

a n +1 = а 1 + nd,

тогава очевидно

a n=
a n-1 + a n+1
2

всеки член на аритметичната прогресия, започвайки от втория, е равен на средноаритметичното на предходния и следващите членове.

числата a, b и c са последователни членове на някаква аритметична прогресия тогава и само ако едно от тях е равно на средното аритметично на другите две.

Например,

a n = 2н- 7 , е аритметична прогресия.

Нека използваме твърдението по-горе. Ние имаме:

a n = 2н- 7,

n-1 = 2(н- 1) - 7 = 2н- 9,

a n+1 = 2(n+ 1) - 7 = 2н- 5.

следователно

a n+1 + a n-1
=
2н- 5 + 2н- 9
= 2н- 7 = a n,
2
2

Забележи, че н -тият член на аритметичната прогресия може да бъде намерен не само чрез а 1 , но и всички предишни a k

a n = a k + (н- к)д.

Например,

За а 5 може да се напише

а 5 = а 1 + 4д,

а 5 = а 2 + 3д,

а 5 = а 3 + 2д,

а 5 = а 4 + д.

a n = един н-к + kd,

a n = a n+k - kd,

тогава очевидно

a n=
а н-к +a n+k
2

всеки член на аритметична прогресия, започвайки от втория, е равен на половината от сбора на членовете на тази аритметична прогресия, разположени на еднакво разстояние от нея.

В допълнение, за всяка аритметична прогресия е вярно равенството:

a m + a n = a k + a l,

m + n = k + l.

Например,

в аритметична прогресия

1) а 10 = 28 = (25 + 31)/2 = (а 9 + а 11 )/2;

2) 28 = а 10 = а 3 + 7д= 7 + 7 3 = 7 + 21 = 28;

3) а 10= 28 = (19 + 37)/2 = (7 + 13)/2;

4) a 2 + a 12 = a 5 + a 9, защото

а 2 + а 12= 4 + 34 = 38,

5 + 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

първи н членове на аритметична прогресия е равно на произведението на половината от сумата на екстремните членове по броя на членовете:

От това по-специално следва, че ако е необходимо да се сумират условията

a k, a k +1 , . . . , a n,

тогава предишната формула запазва своята структура:

Например,

в аритметична прогресия 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

С 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = С 10 - С 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Ако е дадена аритметична прогресия, тогава количествата а 1 , a n, д, нИС н свързани с две формули:

Следователно, ако са дадени стойностите на три от тези величини, тогава съответните стойности на другите две величини се определят от тези формули, комбинирани в система от две уравнения с две неизвестни.

Аритметичната прогресия е монотонна последователност. при което:

  • Ако д > 0 , след това се увеличава;
  • Ако д < 0 , тогава намалява;
  • Ако д = 0 , тогава последователността ще бъде неподвижна.

Геометрична прогресия

геометрична прогресия се нарича редица, всеки член от която, започвайки от втория, е равен на предходния, умножен по същото число.

b 1 , b 2 , b 3 , . . . , b n, . . .

е геометрична прогресия, ако за всяко естествено число н условието е изпълнено:

b n +1 = b n · р,

Където р ≠ 0 - някакво число.

По този начин съотношението на следващия член на тази геометрична прогресия към предишния е постоянно число:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = р.

Номер р Наречен знаменател на геометрична прогресия.

За да зададете геометрична прогресия, достатъчно е да посочите нейния първи член и знаменател.

Например,

Ако b 1 = 1, р = -3 , тогава първите пет члена на редицата се намират, както следва:

b 1 = 1,

б 2 = b 1 · р = 1 · (-3) = -3,

б 3 = б 2 · р= -3 · (-3) = 9,

b 4 = б 3 · р= 9 · (-3) = -27,

b 5 = b 4 · р= -27 · (-3) = 81.

b 1 и знаменател р нея н -ти член може да се намери по формулата:

b n = b 1 · q n -1 .

Например,

намерете седмия член на геометрична прогресия 1, 2, 4, . . .

b 1 = 1, р = 2,

b 7 = b 1 · р 6 = 1 2 6 = 64.

bn-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n,

тогава очевидно

b n 2 = b n -1 · b n +1 ,

всеки член на геометричната прогресия, започвайки от втория, е равен на средното геометрично (пропорционално) на предходния и следващите членове.

Тъй като обратното също е вярно, важи следното твърдение:

числата a, b и c са последователни членове на някаква геометрична прогресия тогава и само ако квадратът на едно от тях е равен на произведението на другите две, т.е. едно от числата е средно геометрично на другите две.

Например,

нека докажем, че последователността, дадена от формулата b n= -3 2 н , е геометрична прогресия. Нека използваме твърдението по-горе. Ние имаме:

b n= -3 2 н,

b n -1 = -3 2 н -1 ,

b n +1 = -3 2 н +1 .

следователно

b n 2 = (-3 2 н) 2 = (-3 2 н -1 ) (-3 2 н +1 ) = b n -1 · b n +1 ,

което доказва търсеното твърдение.

Забележи, че н членът на геометричната прогресия може да се намери не само чрез b 1 , но и всеки предишен мандат b k , за което е достатъчно да се използва формулата

b n = b k · q n - к.

Например,

За b 5 може да се напише

б 5 = b 1 · р 4 ,

б 5 = б 2 · р 3,

б 5 = б 3 · q2,

б 5 = b 4 · р.

b n = b k · q n - к,

b n = b n - к · q k,

тогава очевидно

b n 2 = b n - к· b n + к

квадратът на всеки член на геометрична прогресия, започвайки от втория, е равен на произведението на членовете на тази прогресия, равноотдалечени от нея.

В допълнение, за всяка геометрична прогресия е вярно равенството:

b m· b n= b k· b l,

м+ н= к+ л.

Например,

експоненциално

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · р 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , защото

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

първи н членове на геометрична прогресия със знаменател р 0 изчислено по формулата:

И когато р = 1 - по формулата

S n= n.b. 1

Имайте предвид, че ако трябва да сумираме членовете

b k, b k +1 , . . . , b n,

тогава се използва формулата:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - к +1
.
1 - р

Например,

експоненциално 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

С 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = С 10 - С 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Ако е дадена геометрична прогресия, тогава количествата b 1 , b n, р, нИ S n свързани с две формули:

Следователно, ако са дадени стойностите на всеки три от тези количества, тогава съответните стойности на другите две количества се определят от тези формули, комбинирани в система от две уравнения с две неизвестни.

За геометрична прогресия с първия член b 1 и знаменател р се случва следното свойства на монотонност :

  • прогресията се увеличава, ако е изпълнено едно от следните условия:

b 1 > 0 И р> 1;

b 1 < 0 И 0 < р< 1;

  • Прогресията намалява, ако е изпълнено едно от следните условия:

b 1 > 0 И 0 < р< 1;

b 1 < 0 И р> 1.

Ако р< 0 , тогава геометричната прогресия е знакоредуваща: нейните нечетни членове имат същия знак като първия член, а четните имат противоположен знак. Ясно е, че променливата геометрична прогресия не е монотонна.

Продукт на първия н членовете на геометрична прогресия могат да се изчислят по формулата:

P n= b 1 · б 2 · б 3 · . . . · b n = (b 1 · b n) н / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Безкрайно намаляваща геометрична прогресия

Безкрайно намаляваща геометрична прогресия се нарича безкрайна геометрична прогресия, чийто модул на знаменателя е по-малък от 1 , това е

|р| < 1 .

Имайте предвид, че една безкрайно намаляваща геометрична прогресия може да не е намаляваща последователност. Това отговаря на случая

1 < р< 0 .

С такъв знаменател последователността е знакоредуваща се. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Сумата от безкрайно намаляваща геометрична прогресия назовете числото, на което е сумата от първото н условия на прогресията с неограничено увеличение на броя н . Това число винаги е крайно и се изразява с формулата

С= b 1 + b 2 + b 3 + . . . = b 1
.
1 - р

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Връзка между аритметична и геометрична прогресии

Аритметичната и геометричната прогресия са тясно свързани. Нека разгледаме само два примера.

а 1 , а 2 , а 3 , . . . д , Че

б а 1 , б а 2 , б а 3 , . . . b d .

Например,

1, 3, 5, . . . — аритметична прогресия с разлика 2 И

7 1 , 7 3 , 7 5 , . . . е геометрична прогресия със знаменател 7 2 .

b 1 , b 2 , b 3 , . . . е геометрична прогресия със знаменател р , Че

дневник a b 1, дневник a b 2, дневник a b 3, . . . — аритметична прогресия с разлика дневник ар .

Например,

2, 12, 72, . . . е геометрична прогресия със знаменател 6 И

lg 2, lg 12, lg 72, . . . — аритметична прогресия с разлика lg 6 .

Проблемите с аритметичната прогресия са съществували още в древността. Те се появиха и поискаха решение, защото имаха практическа нужда.

И така, в един от папирусите на Древен Египет, който има математическо съдържание - папирусът на Ринд (XIX век пр.н.е.) - съдържа следната задача: разделете десет мерки хляб на десет души, при условие че разликата между всеки от тях е една осма от такта.

И в математическите трудове на древните гърци има елегантни теореми, свързани с аритметичната прогресия. И така, Хипсикъл от Александрия (2-ри век, който състави много интересни задачи и добави четиринадесетата книга към „Елементите“ на Евклид), формулира идеята: „В аритметична прогресия с четен брой членове, сумата от членовете на 2-ра половина е по-голяма от сумата на членовете на 1-ви на квадрат 1/2 членове.

Последователността an е означена. Числата на редицата се наричат ​​нейни членове и обикновено се обозначават с букви с индекси, които показват поредния номер на този член (a1, a2, a3 ... се чете: „a 1st“, „a 2nd“, „a 3rd ” и така нататък).

Последователността може да бъде безкрайна или крайна.

Какво е аритметична прогресия? Той се разбира като получен чрез добавяне на предходния член (n) със същото число d, което е разликата на прогресията.

Ако d<0, то мы имеем убывающую прогрессию. Если d>0, тогава такава прогресия се счита за нарастваща.

Една аритметична прогресия се нарича крайна, ако се вземат предвид само няколко от нейните първи членове. С много голям брой членове това вече е безкрайна прогресия.

Всяка аритметична прогресия се дава по следната формула:

an =kn+b, докато b и k са някои числа.

Твърдението, което е обратното, е абсолютно вярно: ако редицата е дадена с подобна формула, то това е точно аритметична прогресия, която има свойствата:

  1. Всеки член на прогресията е средноаритметичното на предишния член и следващия.
  2. Обратното: ако, започвайки от 2-ри, всеки член е средноаритметично на предходния член и следващия, т.е. ако условието е изпълнено, тогава дадената последователност е аритметична прогресия. Това равенство е същевременно признак за прогресия, затова обикновено се нарича характерно свойство на прогресията.
    По същия начин теоремата, която отразява това свойство, е вярна: редицата е аритметична прогресия само ако това равенство е вярно за някой от членовете на редицата, започвайки от 2-ри.

Характеристичното свойство за всеки четири числа от една аритметична прогресия може да се изрази с формулата an + am = ak + al, ако n + m = k + l (m, n, k са числата на прогресията).

В аритметична прогресия всеки необходим (N-ти) член може да бъде намерен чрез прилагане на следната формула:

Например: първият член (a1) в аритметична прогресия е даден и е равен на три, а разликата (d) е равна на четири. Трябва да намерите четиридесет и петия член на тази прогресия. a45 = 1+4(45-1)=177

Формулата an = ak + d(n - k) ви позволява да определите n-тия член на аритметична прогресия чрез който и да е неин k-ти член, при условие че е известен.

Сумата от членовете на една аритметична прогресия (като се приемат първите n членове на крайната прогресия) се изчислява, както следва:

Sn = (a1+an) n/2.

Ако първият член също е известен, тогава друга формула е удобна за изчисление:

Sn = ((2a1+d(n-1))/2)*n.

Сумата от аритметична прогресия, която съдържа n члена, се изчислява, както следва:

Изборът на формули за изчисления зависи от условията на задачите и изходните данни.

Естествената поредица от произволни числа като 1,2,3,...,n,... е най-простият пример за аритметична прогресия.

В допълнение към аритметичната прогресия има и геометрична, която има свои собствени свойства и характеристики.

Концепцията за числова последователност предполага, че всяко естествено число съответства на някаква реална стойност. Такава поредица от числа може да бъде както произволна, така и да има определени свойства - прогресия. В последния случай всеки следващ елемент (член) на редицата може да бъде изчислен с помощта на предишния.

Аритметичната прогресия е поредица от числени стойности, в които нейните съседни членове се различават един от друг с едно и също число (всички елементи на серията, започвайки от 2-ри, имат подобно свойство). Това число - разликата между предишния и следващия член - е постоянно и се нарича прогресивна разлика.

Разлика в прогресията: Определение

Помислете за последователност, състояща се от j стойности A = a (1), a (2), a (3), a (4) … a (j), j принадлежи към набора от естествени числа N. Аритметична прогресия, според дефиницията си е последователност, в която a(3) - a(2) = a(4) - a(3) = a(5) - a(4) = ... = a(j) - a(j-1) = d. Стойността на d е желаната разлика на тази прогресия.

d = a(j) - a(j-1).

Разпределете:

  • Нарастваща прогресия, в който случай d > 0. Пример: 4, 8, 12, 16, 20, …
  • намаляваща прогресия, след това d< 0. Пример: 18, 13, 8, 3, -2, …

Разлика на прогресията и нейните произволни елементи

Ако са известни 2 произволни члена на прогресията (i-ти, k-ти), тогава разликата за тази последователност може да се установи въз основа на връзката:

a(i) = a(k) + (i - k)*d, така че d = (a(i) - a(k))/(i-k).

Разликата в прогресията и нейния първи член

Този израз ще помогне да се определи неизвестната стойност само в случаите, когато номерът на елемента на последователността е известен.

Прогресивна разлика и нейната сума

Сборът на една прогресия е сумата от нейните членове. За да изчислите общата стойност на първите му j елемента, използвайте съответната формула:

S(j) =((a(1) + a(j))/2)*j, но тъй като a(j) = a(1) + d(j – 1), тогава S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.

Или аритметика - това е вид подредена числова последователност, чиито свойства се изучават в училищен курс по алгебра. Тази статия разглежда подробно въпроса как да се намери сумата на аритметична прогресия.

Каква е тази прогресия?

Преди да преминете към разглеждането на въпроса (как да намерите сумата от аритметична прогресия), си струва да разберете какво ще бъде обсъдено.

Всяка последователност от реални числа, която се получава чрез добавяне (изваждане) на някаква стойност от всяко предишно число, се нарича алгебрична (аритметична) прогресия. Това определение, преведено на езика на математиката, приема формата:

Тук i е поредният номер на елемента от серията a i . По този начин, знаейки само един начален номер, можете лесно да възстановите цялата серия. Параметърът d във формулата се нарича прогресивна разлика.

Може лесно да се покаже, че за разглежданата редица от числа е валидно следното равенство:

a n \u003d a 1 + d * (n - 1).

Тоест, за да намерите стойността на n-тия елемент в ред, добавете разликата d към първия елемент a 1 n-1 пъти.

Каква е сумата на аритметична прогресия: формула

Преди да дадете формулата за посочената сума, струва си да разгледате прост специален случай. Дадена е прогресия на естествените числа от 1 до 10, трябва да намерите тяхната сума. Тъй като има малко членове в прогресията (10), е възможно да се реши задачата директно, т.е. да се сумират всички елементи по ред.

S 10 \u003d 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 \u003d 55.

Струва си да се има предвид едно интересно нещо: тъй като всеки член се различава от следващия със същата стойност d \u003d 1, тогава двойното сумиране на първия с десетия, втория с деветия и т.н. ще даде същия резултат . Наистина ли:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Както можете да видите, има само 5 от тези суми, тоест точно два пъти по-малко от броя на елементите в серията. След това, като умножите броя на сумите (5) по резултата от всяка сума (11), ще стигнете до резултата, получен в първия пример.

Ако обобщим тези аргументи, можем да напишем следния израз:

S n \u003d n * (a 1 + a n) / 2.

Този израз показва, че изобщо не е необходимо да се сумират всички елементи подред, достатъчно е да се знае стойността на първия a 1 и на последния a n, както и общия брой членове n.

Смята се, че Гаус за първи път се е сетил за това равенство, когато е търсил решение на задачата, поставена от неговия учител: да се сумират първите 100 цели числа.

Сума от елементи от m до n: формула

Формулата, дадена в предходния абзац, отговаря на въпроса как да се намери сумата от аритметична прогресия (на първите елементи), но често в задачите се налага да се сумира поредица от числа в средата на прогресията. Как да го направим?

Най-лесният начин да отговорите на този въпрос е като разгледате следния пример: нека е необходимо да се намери сумата на членовете от m-то до n-то. За да се реши задачата, даден сегмент от m до n от прогресията трябва да бъде представен като нова числова серия. В това представяне m-тият член a m ще бъде първият, а n ще бъде номерирано с n-(m-1). В този случай, прилагайки стандартната формула за сумата, ще се получи следният израз:

S m n \u003d (n - m + 1) * (a m + a n) / 2.

Пример за използване на формули

Знаейки как да намерите сумата на аритметичната прогресия, струва си да разгледате прост пример за използване на горните формули.

По-долу е дадена числова последователност, трябва да намерите сумата от нейните членове, започвайки от 5-ти и завършвайки с 12-ти:

Дадените числа показват, че разликата d е равна на 3. Използвайки израза за n-тия елемент, можете да намерите стойностите на 5-ия и 12-ия член на прогресията. Оказва се:

a 5 \u003d a 1 + d * 4 \u003d -4 + 3 * 4 \u003d 8;

a 12 \u003d a 1 + d * 11 \u003d -4 + 3 * 11 \u003d 29.

Познавайки стойностите на числата в краищата на разглежданата алгебрична прогресия, както и знаейки кои числа в серията заемат, можете да използвате формулата за сумата, получена в предишния параграф. Вземете:

S 5 12 \u003d (12 - 5 + 1) * (8 + 29) / 2 \u003d 148.

Струва си да се отбележи, че тази стойност може да се получи по различен начин: първо, намерете сумата на първите 12 елемента, като използвате стандартната формула, след това изчислете сумата на първите 4 елемента, като използвате същата формула, и след това извадете втората от първата сума .


Например последователността \(2\); \(5\); \(8\); \(единадесет\); \(14\)… е аритметична прогресия, тъй като всеки следващ елемент се различава от предходния с три (може да се получи от предишния чрез добавяне на три):

В тази прогресия разликата \(d\) е положителна (равна на \(3\)) и следователно всеки следващ член е по-голям от предишния. Такива прогресии се наричат повишаване на.

Въпреки това \(d\) може да бъде и отрицателно число. Например, в аритметична прогресия \(16\); \(10\); \(4\); \(-2\); \(-8\)… разликата в прогресията \(d\) е равна на минус шест.

И в този случай всеки следващ елемент ще бъде по-малък от предишния. Тези прогресии се наричат намаляващи.

Нотиране на аритметична прогресия

Прогресията се обозначава с малка латинска буква.

Числата, които образуват прогресия, се наричат членове(или елементи).

Те се обозначават със същата буква като аритметичната прогресия, но с цифров индекс, равен на номера на елемента по ред.

Например, аритметичната прогресия \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) се състои от елементите \(a_1=2\); \(a_2=5\); \(a_3=8\) и така нататък.

С други думи, за прогресията \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Решаване на задачи в аритметична прогресия

По принцип горната информация вече е достатъчна за решаване на почти всеки проблем с аритметична прогресия (включително предлаганите в OGE).

Пример (OGE). Аритметичната прогресия се дава от условията \(b_1=7; d=4\). Намерете \(b_5\).
Решение:

Отговор: \(b_5=23\)

Пример (OGE). Дадени са първите три члена на една аритметична прогресия: \(62; 49; 36…\) Намерете стойността на първия отрицателен член на тази прогресия..
Решение:

Дадени са ни първите елементи на редицата и знаем, че тя е аритметична прогресия. Тоест, всеки елемент се различава от съседния със същото число. Разберете кой, като извадите предишния от следващия елемент: \(d=49-62=-13\).

Сега можем да възстановим нашата прогресия до желания (първи отрицателен) елемент.

Готов. Можете да напишете отговор.

Отговор: \(-3\)

Пример (OGE). Дадени са няколко последователни елемента от аритметична прогресия: \(...5; x; 10; 12,5...\) Намерете стойността на елемента, означен с буквата \(x\).
Решение:


За да намерим \(x\), трябва да знаем колко се различава следващият елемент от предишния, с други думи, разликата в прогресията. Нека го намерим от два познати съседни елемента: \(d=12,5-10=2,5\).

И сега намираме това, което търсим без никакви проблеми: \(x=5+2.5=7.5\).


Готов. Можете да напишете отговор.

Отговор: \(7,5\).

Пример (OGE). Аритметичната прогресия се дава от следните условия: \(a_1=-11\); \(a_(n+1)=a_n+5\) Намерете сумата от първите шест члена на тази прогресия.
Решение:

Трябва да намерим сумата от първите шест члена на прогресията. Но ние не знаем техните значения, даден ни е само първият елемент. Затова първо изчисляваме стойностите на свой ред, като използваме дадените ни:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
И след като изчислим шестте елемента, от които се нуждаем, намираме тяхната сума.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Исканата сума е намерена.

Отговор: \(S_6=9\).

Пример (OGE). В аритметична прогресия \(a_(12)=23\); \(a_(16)=51\). Намерете разликата на тази прогресия.
Решение:

Отговор: \(d=7\).

Важни формули за аритметична прогресия

Както можете да видите, много проблеми с аритметичната прогресия могат да бъдат решени просто чрез разбиране на основното - че аритметичната прогресия е верига от числа и всеки следващ елемент в тази верига се получава чрез добавяне на същото число към предишното (разликата на прогресията).

Въпреки това, понякога има ситуации, когато е много неудобно да се реши "на челото". Например, представете си, че в първия пример трябва да намерим не петия елемент \(b_5\), а триста осемдесет и шестия \(b_(386)\). Какво е, ние \ (385 \) пъти да добавим четири? Или си представете, че в предпоследния пример трябва да намерите сумата от първите седемдесет и три елемента. Броенето е объркващо...

Следователно в такива случаи те не решават „на чело“, а използват специални формули, получени за аритметична прогресия. И основните от тях са формулата за n-тия член на прогресията и формулата за сумата \(n\) на първите членове.

Формула за \(n\)-тия член: \(a_n=a_1+(n-1)d\), където \(a_1\) е първият член на прогресията;
\(n\) – номер на търсения елемент;
\(a_n\) е член на прогресията с номер \(n\).


Тази формула ни позволява бързо да намерим поне тристотния, дори милионния елемент, знаейки само първия и разликата в прогресията.

Пример. Аритметичната прогресия се дава от условията: \(b_1=-159\); \(d=8,2\). Намерете \(b_(246)\).
Решение:

Отговор: \(b_(246)=1850\).

Формулата за сбора на първите n члена е: \(S_n=\frac(a_1+a_n)(2) \cdot n\), където



\(a_n\) е последният сумиран член;


Пример (OGE). Аритметичната прогресия се дава от условията \(a_n=3.4n-0.6\). Намерете сумата от първите \(25\) членове на тази прогресия.
Решение:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

За да изчислим сумата на първите двадесет и пет елемента, трябва да знаем стойността на първия и двадесет и петия член.
Нашата прогресия се дава по формулата на n-тия член в зависимост от неговия номер (вижте подробности). Нека изчислим първия елемент, като заменим \(n\) с единица.

\(n=1;\) \(a_1=3,4 1-0,6=2,8\)

Сега намираме двадесет и петия член, като заместваме двадесет и пет вместо \(n\).

\(n=25;\) \(a_(25)=3,4 25-0,6=84,4\)

Е, сега изчисляваме необходимата сума без никакви проблеми.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

Отговорът е готов.

Отговор: \(S_(25)=1090\).

За сумата \(n\) от първите членове можете да получите друга формула: просто трябва да \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) вместо \(a_n\) заменете формулата за него \(a_n=a_1+(n-1)d\). Получаваме:

Формулата за сбора на първите n члена е: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), където

\(S_n\) – исканата сума \(n\) на първите елементи;
\(a_1\) е първият член, който трябва да се сумира;
\(d\) – разлика в прогресията;
\(n\) - броят на елементите в сумата.

Пример. Намерете сумата от първите \(33\)-ex членове на аритметичната прогресия: \(17\); \(15,5\); \(14\)…
Решение:

Отговор: \(S_(33)=-231\).

По-трудни задачи с аритметична прогресия

Сега разполагате с цялата необходима информация, за да решите почти всеки проблем с аритметична прогресия. Нека завършим темата, като разгледаме задачи, в които трябва не само да прилагате формули, но и да мислите малко (в математиката това може да бъде полезно ☺)

Пример (OGE). Намерете сумата от всички отрицателни членове на прогресията: \(-19.3\); \(-19\); \(-18,7\)…
Решение:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Задачата е много подобна на предишната. Започваме да решаваме по същия начин: първо намираме \(d\).

\(d=a_2-a_1=-19-(-19.3)=0.3\)

Сега бихме заместили \(d\) във формулата за сумата ... и тук изскача малък нюанс - не знаем \(n\). С други думи, не знаем колко термина ще трябва да се добавят. Как да разберем? Нека да помислим. Ще спрем да добавяме елементи, когато стигнем до първия положителен елемент. Тоест, трябва да разберете броя на този елемент. как? Нека запишем формулата за изчисляване на всеки елемент от аритметична прогресия: \(a_n=a_1+(n-1)d\) за нашия случай.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1) 0,3\)

Трябва \(a_n\) да е по-голямо от нула. Нека да разберем за какво \(n\) ще се случи това.

\(-19,3+(n-1) 0,3>0\)

\((n-1) 0,3>19,3\) \(|:0,3\)

Разделяме двете страни на неравенството на \(0,3\).

\(n-1>\)\(\frac(19,3)(0,3)\)

Прехвърляме минус едно, като не забравяме да сменим знаците

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

Изчисляване...

\(n>65 333…\)

… и се оказва, че първият положителен елемент ще има числото \(66\). Съответно последният отрицателен има \(n=65\). За всеки случай нека да го проверим.

\(n=65;\) \(a_(65)=-19,3+(65-1) 0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1) 0,3=0,2\)

Следователно трябва да добавим първите \(65\) елемента.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Отговорът е готов.

Отговор: \(S_(65)=-630,5\).

Пример (OGE). Аритметичната прогресия се дава от условията: \(a_1=-33\); \(a_(n+1)=a_n+4\). Намерете сумата от \(26\)-ия до \(42\) елемент включително.
Решение:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

В тази задача също трябва да намерите сумата от елементи, но започвайки не от първия, а от \(26\)-ия. Нямаме формула за това. Как да решим?
Лесно - за да получите сбора от \(26\)-та до \(42\)-та, първо трябва да намерите сумата от \(1\)-та до \(42\)-та и след това да извадите от нея сумата от първият до \ (25 \) ти (вижте снимката).


За нашата прогресия \(a_1=-33\) и разликата \(d=4\) (все пак добавяме четири към предишния елемент, за да намерим следващия). Знаейки това, намираме сумата от първите \(42\)-uh елементи.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Сега сумата от първите \(25\)-ти елементи.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

И накрая изчисляваме отговора.

\(S=S_(42)-S_(25)=2058-375=1683\)

Отговор: \(S=1683\).

За аритметична прогресия има още няколко формули, които не сме разгледали в тази статия поради тяхната ниска практическа полезност. Можете обаче лесно да ги намерите.



Подобни статии