Намерете възела на три числа html. Как да намерим най-малкото общо кратно на числа

За да разберете как да изчислите LCM, първо трябва да определите значението на термина "множество".


Кратно на A е естествено число, което се дели без остатък на A. Така 15, 20, 25 и т.н. могат да се считат за кратни на 5.


Може да има ограничен брой делители на определено число, но има безкраен брой кратни.


Общо кратно на естествени числа е число, което се дели на тях без остатък.

Как да намерим най-малкото общо кратно на числа

Най-малкото общо кратно (LCM) на числа (две, три или повече) е най-малкото естествено число, което се дели равномерно на всички тези числа.


За да намерите NOC, можете да използвате няколко метода.


За малки числа е удобно да се изпишат в ред всички кратни на тези числа, докато се намери общо сред тях. Множествата се означават в записа с главна буква K.


Например, кратни на 4 могат да бъдат записани така:


K(4) = (8,12, 16, 20, 24, ...)


K(6) = (12, 18, 24, ...)


И така, можете да видите, че най-малкото общо кратно на числата 4 и 6 е числото 24. Това въвеждане се извършва по следния начин:


LCM(4, 6) = 24


Ако числата са големи, намерете общото кратно на три или повече числа, тогава е по-добре да използвате друг начин за изчисляване на LCM.


За да изпълните задачата, е необходимо да разложите предложените числа на прости множители.


Първо трябва да напишете разширението на най-голямото от числата в ред, а под него - останалите.


При разширяването на всяко число може да има различен брой фактори.


Например, нека разложим числата 50 и 20 на прости множители.




При разширяването на по-малкото число трябва да се подчертаят факторите, които липсват при разширяването на първото най-голямо число, и след това да се добавят към него. В представения пример липсва двойка.


Сега можем да изчислим най-малкото общо кратно на 20 и 50.


LCM (20, 50) = 2 * 5 * 5 * 2 = 100


Така произведението на простите множители на по-голямото число и множителите на второто число, които не са включени в разлагането на по-голямото число, ще бъде най-малкото общо кратно.


За да се намери LCM на три или повече числа, всички те трябва да бъдат разложени на прости множители, както в предишния случай.


Като пример можете да намерите най-малкото общо кратно на числата 16, 24, 36.


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


Така само две двойки от разлагането на шестнадесет не са включени в разлагането на по-голямо число (едно е в разлагането на двадесет и четири).


Следователно те трябва да бъдат добавени към разлагането на по-голям брой.


LCM (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


Има специални случаи за определяне на най-малкото общо кратно. Така че, ако едно от числата може да се раздели без остатък на друго, тогава по-голямото от тези числа ще бъде най-малкото общо кратно.


Например NOC от дванадесет и двадесет и четири биха били двадесет и четири.


Ако е необходимо да се намери най-малкото общо кратно на взаимно прости числа, които нямат еднакви делители, тогава техният LCM ще бъде равен на техния продукт.


Например LCM(10, 11) = 110.

Нека продължим дискусията за най-малкото общо кратно, която започнахме в раздела LCM - Най-малко общо кратно, дефиниция, примери. В тази тема ще разгледаме начини за намиране на LCM за три или повече числа, ще анализираме въпроса как да намерим LCM на отрицателно число.

Yandex.RTB R-A-339285-1

Изчисляване на най-малкото общо кратно (LCM) чрез gcd

Вече установихме връзката между най-малкото общо кратно и най-големия общ делител. Сега нека научим как да дефинираме LCM чрез GCD. Първо, нека разберем как да направим това за положителни числа.

Определение 1

Можете да намерите най-малкото общо кратно чрез най-големия общ делител, като използвате формулата LCM (a, b) \u003d a b: НОД (a, b) .

Пример 1

Необходимо е да се намери LCM на числата 126 и 70.

Решение

Нека вземем a = 126 , b = 70 . Заменете стойностите във формулата за изчисляване на най-малкото общо кратно чрез най-големия общ делител LCM (a, b) = a · b: НОД (a, b) .

Намира НОД на числата 70 и 126. За това се нуждаем от алгоритъма на Евклид: 126 = 70 1 + 56 , 70 = 56 1 + 14 , 56 = 14 4 , следователно gcd (126 , 70) = 14 .

Нека изчислим LCM: LCM (126, 70) = 126 70: НОД (126, 70) = 126 70: 14 = 630.

Отговор: LCM (126, 70) = 630.

Пример 2

Намерете nok на числата 68 и 34.

Решение

GCD в този случай е лесно да се намери, тъй като 68 се дели на 34. Изчислете най-малкото общо кратно, като използвате формулата: LCM (68, 34) = 68 34: НОД (68, 34) = 68 34: 34 = 68.

Отговор: LCM(68, 34) = 68.

В този пример използвахме правилото за намиране на най-малкото общо кратно на положителни цели числа a и b: ако първото число се дели на второто, тогава LCM на тези числа ще бъде равно на първото число.

Намиране на LCM чрез разлагане на числа на прости множители

Сега нека разгледаме начин за намиране на LCM, който се основава на разлагането на числата на прости множители.

Определение 2

За да намерим най-малкото общо кратно, трябва да изпълним няколко прости стъпки:

  • съставяме произведението на всички прости множители на числа, за които трябва да намерим LCM;
  • ние изключваме всички прости множители от техните получени продукти;
  • произведението, получено след елиминиране на общите прости множители, ще бъде равно на LCM на дадените числа.

Този начин за намиране на най-малкото общо кратно се основава на равенството LCM (a , b) = a · b: GCM (a , b) . Ако погледнете формулата, ще стане ясно: произведението на числата a и b е равно на произведението на всички фактори, които участват в разширяването на тези две числа. В този случай НОД на две числа е равен на произведението на всички прости множители, които присъстват едновременно в разложенията на тези две числа.

Пример 3

Имаме две числа 75 и 210. Можем да ги разделим по следния начин: 75 = 3 5 5И 210 = 2 3 5 7. Ако направите произведението на всички множители на двете оригинални числа, получавате: 2 3 3 5 5 5 7.

Ако изключим множителите, общи за числата 3 и 5, получаваме продукт от следната форма: 2 3 5 5 7 = 1050. Този продукт ще бъде нашият LCM за числата 75 и 210.

Пример 4

Намерете LCM на числата 441 И 700 , разлагайки двете числа на прости множители.

Решение

Нека намерим всички прости множители на числата, дадени в условието:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Получаваме две вериги от числа: 441 = 3 3 7 7 и 700 = 2 2 5 5 7 .

Продуктът на всички фактори, които са участвали в разширяването на тези числа, ще изглежда така: 2 2 3 3 5 5 7 7 7. Нека намерим общите множители. Това число е 7. Изключваме го от общия продукт: 2 2 3 3 5 5 7 7. Оказва се, че NOC (441 , 700) = 2 2 3 3 5 5 7 7 = 44 100.

Отговор: LCM (441 , 700) = 44 100 .

Нека дадем още една формулировка на метода за намиране на LCM чрез разлагане на числата на прости множители.

Определение 3

Преди това изключихме от общия брой фактори, общи за двете числа. Сега ще го направим по различен начин:

  • Нека разложим и двете числа на прости множители:
  • добавете към произведението на простите множители на първото число липсващите множители на второто число;
  • получаваме продукта, който ще бъде търсеният LCM от две числа.

Пример 5

Да се ​​върнем към числата 75 и 210, за които вече търсихме LCM в един от предишните примери. Нека ги разделим на прости фактори: 75 = 3 5 5И 210 = 2 3 5 7. Към произведението на множители 3 , 5 и 5 номер 75 добавете липсващите множители 2 И 7 числата 210 . Получаваме: 2 3 5 5 7 .Това е LCM на числата 75 и 210.

Пример 6

Необходимо е да се изчисли LCM на числата 84 и 648.

Решение

Нека разложим числата от условието на прости множители: 84 = 2 2 3 7И 648 = 2 2 2 3 3 3 3. Добавете към произведението на множителите 2 , 2 , 3 и 7 числа 84 липсващи множители 2 , 3 , 3 и
3 числата 648 . Получаваме продукта 2 2 2 3 3 3 3 7 = 4536 .Това е най-малкото общо кратно на 84 и 648.

Отговор: LCM (84, 648) = 4536.

Намиране на LCM на три или повече числа

Независимо с колко числа имаме работа, алгоритъмът на нашите действия винаги ще бъде един и същ: последователно ще намираме LCM на две числа. Има теорема за този случай.

Теорема 1

Да предположим, че имаме цели числа a 1 , a 2 , … , a k. НОК m kот тези числа се намира при последователно изчисление m 2 = LCM (a 1 , a 2) , m 3 = LCM (m 2 , a 3) , … , m k = LCM (m k − 1 , a k) .

Сега нека да разгледаме как теоремата може да се приложи към конкретни проблеми.

Пример 7

Трябва да изчислите най-малкото общо кратно на четирите числа 140 , 9 , 54 и 250 .

Решение

Нека въведем нотацията: a 1 = 140, a 2 = 9, a 3 = 54, a 4 = 250.

Нека започнем с изчисляването на m 2 = LCM (a 1 , a 2) = LCM (140 , 9) . Нека използваме евклидовия алгоритъм, за да изчислим НОД на числата 140 и 9: 140 = 9 15 + 5 , 9 = 5 1 + 4 , 5 = 4 1 + 1 , 4 = 1 4 . Получаваме: НОД(140, 9) = 1, НОК(140, 9) = 140 9: НОД(140, 9) = 140 9: 1 = 1260. Следователно m 2 = 1 260 .

Сега нека изчислим по същия алгоритъм m 3 = LCM (m 2 , a 3) = LCM (1 260 , 54) . В хода на изчисленията получаваме m 3 = 3 780.

Остава да изчислим m 4 \u003d LCM (m 3, a 4) \u003d LCM (3 780, 250) . Ние действаме по същия алгоритъм. Получаваме m 4 \u003d 94 500.

LCM на четирите числа от примерното условие е 94500.

Отговор: LCM (140, 9, 54, 250) = 94 500.

Както можете да видите, изчисленията са прости, но доста трудоемки. За да спестите време, можете да отидете по друг начин.

Определение 4

Предлагаме ви следния алгоритъм на действие:

  • разложи всички числа на прости множители;
  • към произведението на множителите на първото число добавете липсващите множители от произведението на второто число;
  • добавете липсващите фактори на третото число към продукта, получен на предишния етап и т.н.;
  • полученото произведение ще бъде най-малкото общо кратно на всички числа от условието.

Пример 8

Необходимо е да се намери НОК на пет числа 84, 6, 48, 7, 143.

Решение

Нека разложим всичките пет числа на прости множители: 84 = 2 2 3 7 , 6 = 2 3 , 48 = 2 2 2 2 3 , 7 , 143 = 11 13 . Простите числа, което е числото 7, не могат да бъдат разложени на прости множители. Такива числа съвпадат с тяхното разлагане на прости множители.

Сега нека вземем произведението на простите множители 2, 2, 3 и 7 на числото 84 и добавим към тях липсващите множители на второто число. Разложихме числото 6 на 2 и 3. Тези множители вече са в произведението на първото число. Затова ги пропускаме.

Продължаваме да добавяме липсващите множители. Обръщаме се към числото 48, от произведението на прости множители, на които вземаме 2 и 2. След това добавяме прост множител 7 от четвъртото число и множителите 11 и 13 от петото. Получаваме: 2 2 2 2 3 7 11 13 = 48 048. Това е най-малкото общо кратно на петте оригинални числа.

Отговор: LCM (84, 6, 48, 7, 143) = 48 048.

Намиране на най-малкото общо кратно на отрицателни числа

За да се намери най-малкото общо кратно на отрицателни числа, тези числа трябва първо да бъдат заменени с числа с противоположен знак и след това изчисленията да се извършат съгласно горните алгоритми.

Пример 9

LCM(54, −34) = LCM(54, 34) и LCM(−622,−46, −54, −888) = LCM(622, 46, 54, 888) .

Такива действия са допустими поради факта, че ако се приеме, че аИ − а- противоположни числа
тогава множеството от кратни асъвпада с набора от кратни на число − а.

Пример 10

Необходимо е да се изчисли LCM на отрицателни числа − 145 И − 45 .

Решение

Нека сменим числата − 145 И − 45 към техните противоположни числа 145 И 45 . Сега, използвайки алгоритъма, ние изчисляваме LCM (145, 45) = 145 45: GCD (145, 45) = 145 45: 5 = 1 305, като преди това сме определили GCD с помощта на алгоритъма на Евклид.

Получаваме, че НОК на числата − 145 и − 45 равно на 1 305 .

Отговор: LCM (− 145 , − 45) = 1 305 .

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter

Определение.Нарича се най-голямото естествено число, на което числата a и b се делят без остатък най-голям общ делител (gcd)тези числа.

Нека намерим най-големия общ делител на числата 24 и 35.
Делителите на 24 ще бъдат числата 1, 2, 3, 4, 6, 8, 12, 24, а делителите на 35 ще бъдат числата 1, 5, 7, 35.
Виждаме, че числата 24 и 35 имат само един общ делител - числото 1. Такива числа се наричат взаимно приме.

Определение.Естествените числа се наричат взаимно примеако техният най-голям общ делител (gcd) е 1.

Най-голям общ делител (НОД)може да се намери, без да се изписват всички делители на дадените числа.

Разлагайки числата 48 и 36 на множители, получаваме:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
От факторите, включени в разширяването на първото от тези числа, изтриваме онези, които не са включени в разширяването на второто число (т.е. две двойки).
Остават множителите 2 * 2 * 3. Тяхното произведение е 12. Това число е най-големият общ делител на числата 48 и 36. Намерен е и най-големият общ делител на три или повече числа.

Да намеря най-голям общ делител

2) от факторите, включени в разширяването на едно от тези числа, зачеркнете онези, които не са включени в разширяването на други числа;
3) намерете произведението на останалите множители.

Ако всички дадени числа се делят на едно от тях, то това число е най-голям общ делителдадени числа.
Например най-големият общ делител на 15, 45, 75 и 180 е 15, тъй като той дели всички останали числа: 45, 75 и 180.

Най-малко общо кратно (LCM)

Определение. Най-малко общо кратно (LCM)естествените числа a и b са най-малкото естествено число, което е кратно на a и b. Най-малкото общо кратно (LCM) на числата 75 и 60 може да се намери, без да се записват кратни на тези числа подред. За да направим това, разлагаме 75 и 60 на прости множители: 75 \u003d 3 * 5 * 5 и 60 \u003d 2 * 2 * 3 * 5.
Изписваме факторите, включени в разширението на първото от тези числа, и добавяме към тях липсващите фактори 2 и 2 от разширението на второто число (т.е. комбинираме факторите).
Получаваме пет фактора 2 * 2 * 3 * 5 * 5, чийто продукт е 300. Това число е най-малкото общо кратно на числата 75 и 60.

Също така намерете най-малкото общо кратно на три или повече числа.

Да се намерете най-малкото общо кратноняколко естествени числа, трябва:
1) разложи ги на прости множители;
2) напишете факторите, включени в разширяването на едно от числата;
3) добавете към тях липсващите множители от разширенията на останалите числа;
4) намерете произведението на получените фактори.

Обърнете внимание, че ако едно от тези числа се дели на всички други числа, тогава това число е най-малкото общо кратно на тези числа.
Например най-малкото общо кратно на 12, 15, 20 и 60 би било 60, тъй като се дели на всички дадени числа.

Питагор (VI в. пр. н. е.) и неговите ученици изучават въпроса за делимостта на числата. Число, равно на сумата от всичките му делители (без самото число), те наричат ​​перфектно число. Например числата 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) са перфектни. Следващите съвършени числа са 496, 8128, 33 550 336. Питагорейците са знаели само първите три съвършени числа. Четвъртият - 8128 - става известен през 1 век. н. д. Петият - 33 550 336 - е намерен през 15 век. До 1983 г. вече са известни 27 съвършени числа. Но досега учените не знаят дали има нечетни съвършени числа, дали има най-голямото съвършено число.
Интересът на древните математици към простите числа се дължи на факта, че всяко число е или просто, или може да бъде представено като произведение на прости числа, тоест простите числа са като тухли, от които са изградени останалите естествени числа.
Вероятно сте забелязали, че простите числа в редицата от естествени числа се срещат неравномерно - в някои части на редицата са повече, в други - по-малко. Но колкото по-нататък се движим по редицата от числа, толкова по-редки са простите числа. Възниква въпросът: съществува ли последното (най-голямото) просто число? Древногръцкият математик Евклид (3 век пр. н. е.) в книгата си „Начала“, която в продължение на две хиляди години е основният учебник по математика, доказва, че има безкрайно много прости числа, тоест зад всяко просто число стои четно число. по-голямо просто число.
За намиране на прости числа друг гръцки математик от същото време, Ератостен, измисли такъв метод. Той записа всички числа от 1 до някакво число и след това задраска единицата, която не е нито просто, нито съставно число, след това задраска през едно всички числа след 2 (числа, кратни на 2, т.е. 4, 6, 8 и т.н.). Първото останало число след 2 беше 3. След това, след две, всички числа след 3 бяха зачеркнати (числа, кратни на 3, т.е. 6, 9, 12 и т.н.). накрая само простите числа останаха незадраскани.

Нека започнем да изучаваме най-малкото общо кратно на две или повече числа. В раздела ще дадем определение на термина, ще разгледаме теорема, която установява връзка между най-малкото общо кратно и най-големия общ делител и ще дадем примери за решаване на задачи.

Общи кратни - определение, примери

В тази тема ще се интересуваме само от общи кратни на цели числа, различни от нула.

Определение 1

Общо кратно на цели числае цяло число, което е кратно на всички дадени числа. Всъщност това е всяко цяло число, което може да бъде разделено на което и да е от дадените числа.

Определението за общи кратни се отнася до две, три или повече цели числа.

Пример 1

Според дефиницията, дадена по-горе за числото 12, общите кратни са 3 и 2. Също така числото 12 ще бъде общо кратно на числата 2, 3 и 4. Числата 12 и -12 са обикновени кратни на числата ±1, ±2, ±3, ±4, ±6, ±12.

В същото време общото кратно на числата 2 и 3 ще бъдат числата 12 , 6 , − 24 , 72 , 468 , − 100 010 004 и редица други.

Ако вземем числа, които се делят на първото число от двойката и не се делят на второто, тогава такива числа няма да бъдат общи кратни. И така, за числата 2 и 3 числата 16 , − 27 , 5009 , 27001 няма да бъдат общи кратни.

0 е общо кратно на всеки набор от ненулеви цели числа.

Ако си припомним свойството на делимост по отношение на противоположни числа, тогава се оказва, че някакво цяло число k ще бъде общо кратно на тези числа по същия начин, както числото - k. Това означава, че общите делители могат да бъдат положителни или отрицателни.

Възможно ли е да се намери LCM за всички номера?

Общото кратно може да се намери за всякакви цели числа.

Пример 2

Да предположим, че ни е дадено кцели числа a 1 , a 2 , … , a k. Числото, което получаваме при умножението на числата a 1 a 2 … a kспоред свойството на делимост, то ще бъде разделено на всеки от факторите, които са били включени в оригиналния продукт. Това означава, че произведението на числата a 1 , a 2 , … , a kе най-малкото общо кратно на тези числа.

Колко общи кратни могат да имат тези цели числа?

Група от цели числа може да има голям брой общи кратни. Всъщност броят им е безкраен.

Пример 3

Да предположим, че имаме някакво число k. Тогава произведението на числата k · z , където z е цяло число, ще бъде общо кратно на числата k и z . Като се има предвид, че броят на числата е безкраен, тогава броят на общите кратни е безкраен.

Най-малко общо кратно (LCM) - определение, символ и примери

Припомнете си концепцията за най-малкото число от даден набор от числа, която разгледахме в раздела Сравнение на цели числа. Имайки предвид тази концепция, нека формулираме дефиницията на най-малкото общо кратно, което има най-голяма практическа стойност сред всички общи кратни.

Определение 2

Най-малкото общо кратно на дадени цели числае най-малкото положително общо кратно на тези числа.

Най-малкото общо кратно съществува за произволен брой дадени числа. Съкращението NOK е най-често използваното за означаване на понятие в референтната литература. Стенограма за най-малко общо кратно за числа a 1 , a 2 , … , a kще изглежда като LCM (a 1, a 2, …, a k).

Пример 4

Най-малкото общо кратно на 6 и 7 е 42. Тези. LCM(6, 7) = 42. Най-малкото общо кратно на четири числа - 2, 12, 15 и 3 ще бъде равно на 60. Стенограмата ще бъде LCM (- 2 , 12 , 15 , 3) ​​​​= 60 .

Не за всички групи от дадени числа най-малкото общо кратно е очевидно. Често трябва да се изчислява.

Връзка между NOC и NOD

Най-малкото общо кратно и най-големият общ делител са свързани. Връзката между понятията се установява от теоремата.

Теорема 1

Най-малкото общо кратно на две цели положителни числа a и b е равно на произведението на числата a и b, делено на най-големия общ делител на числата a и b, тоест LCM (a, b) = a b: gcd (a , б) .

доказателство 1

Да предположим, че имаме някакво число M, което е кратно на числата a и b. Ако числото M се дели на a, има и някакво цяло z , при които равенството M = a k. Според дефиницията за делимост, ако М също се дели на b, така че след това a kразделена на b.

Ако въведем нова нотация за gcd (a , b) as д, тогава можем да използваме равенствата a = a 1 dи b = b 1 · d . В този случай и двете равенства ще бъдат взаимно прости числа.

Вече установихме това по-горе a kразделена на b. Сега това условие може да се запише по следния начин:
a 1 d kразделена на b 1 d, което е еквивалентно на условието а 1 кразделена на b 1според свойствата на делимост.

Според свойството на относително прости числа, ако а 1И b 1са взаимно прости числа, а 1не се дели на b 1въпреки факта, че а 1 кразделена на b 1, Че b 1трябва да сподели к.

В този случай би било уместно да приемем, че има число T, за което k = b 1 t, и оттогава b1=b:d, Че k = b: d t.

Сега вместо кпоставени в равенство M = a kизразяване на формата b: d t. Това ни позволява да стигнем до равенство M = a b: d t. При t=1можем да получим най-малкото положително общо кратно на a и b , равен a b: d, при условие че числата a и b положителен.

Така че доказахме, че LCM (a , b) = a b: НОД (a,b).

Установяването на връзка между LCM и GCD ви позволява да намерите най-малкото общо кратно чрез най-големия общ делител на две или повече дадени числа.

Определение 3

Теоремата има две важни следствия:

  • кратни на най-малкото общо кратно на две числа са същите като общи кратни на тези две числа;
  • най-малкото общо кратно на взаимно прости положителни числа a и b е равно на техния продукт.

Не е трудно да се обосноват тези два факта. Всяко общо кратно на M числа a и b се определя от равенството M = LCM (a, b) t за някаква цяло число t. Тъй като a и b са взаимно прости, тогава gcd (a, b) = 1, следователно, LCM (a, b) = a b: gcd (a, b) = a b: 1 = a b.

Най-малко общо кратно на три или повече числа

За да намерите най-малкото общо кратно на няколко числа, трябва последователно да намерите LCM на две числа.

Теорема 2

Нека се преструваме, че a 1 , a 2 , … , a kса някои положителни цели числа. За изчисляване на LCM m kтези числа трябва да изчислим последователно m 2 = LCM(a 1 , a 2) , m 3 = НОК(m 2 , a 3) , … , m k = НОК(m k - 1, a k) .

Доказателство 2

Първото следствие от първата теорема, обсъдено в тази тема, ще ни помогне да докажем верността на втората теорема. Разсъжденията се изграждат съгласно следния алгоритъм:

  • общи кратни на числа а 1И а 2съвпадат с кратни на техния LCM, всъщност те съвпадат с кратни на числото м2;
  • общи кратни на числа а 1, а 2И а 3 м2И а 3 м 3;
  • общи кратни на числа a 1 , a 2 , … , a kсъвпадат с общи кратни на числа m k - 1И a k, следователно съвпадат с кратни на числото m k;
  • поради факта, че най-малкото положително кратно на числото m kе самото число m k, тогава най-малкото общо кратно на числата a 1 , a 2 , … , a kе m k.

Така че доказахме теоремата.

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter

Онлайн калкулаторът ви позволява бързо да намерите най-големия общ делител и най-малкото общо кратно на две или произволен друг брой числа.

Калкулатор за намиране на GCD и NOC

Намерете GCD и NOC

GCD и NOC намерени: 6433

Как да използвате калкулатора

  • Въведете числа в полето за въвеждане
  • В случай на въвеждане на грешни символи, полето за въвеждане ще бъде маркирано в червено
  • натиснете бутона "Намиране на GCD и NOC"

Как се въвеждат числа

  • Числата се въвеждат разделени с интервали, точки или запетаи
  • Дължината на въведените числа не е ограничена, така че намирането на gcd и lcm на дълги числа няма да е трудно

Какво е NOD и NOK?

Най-голям общ делителот няколко числа е най-голямото естествено цяло число, на което всички оригинални числа се делят без остатък. Най-големият общ делител се обозначава съкратено като GCD.
Най-малко общо кратноняколко числа е най-малкото число, което се дели на всяко от оригиналните числа без остатък. Най-малкото общо кратно се обозначава съкратено като НОК.

Как да проверя дали едно число се дели на друго число без остатък?

За да разберете дали едно число се дели на друго без остатък, можете да използвате някои свойства на делимост на числата. След това чрез комбинирането им може да се провери делимостта на някои от тях и техните комбинации.

Някои признаци за делимост на числата

1. Признак за делимост на числото на 2
За да определите дали едно число се дели на две (дали е четно), достатъчно е да погледнете последната цифра на това число: ако е равно на 0, 2, 4, 6 или 8, тогава числото е четно, което означава, че се дели на 2.
Пример:определи дали числото 34938 се дели на 2.
Решение:погледнете последната цифра: 8 означава, че числото се дели на две.

2. Признак за делимост на числото на 3
Едно число се дели на 3, когато сборът от неговите цифри се дели на 3. По този начин, за да определите дали дадено число се дели на 3, трябва да изчислите сумата от цифрите и да проверите дали се дели на 3. Дори ако сумата от цифрите се окаже много голяма, можете да повторите същия процес отново.
Пример:определи дали числото 34938 се дели на 3.
Решение:броим сбора на цифрите: 3+4+9+3+8 = 27. 27 се дели на 3, което означава, че числото се дели на три.

3. Признак за делимост на числото на 5
Едно число се дели на 5, когато последната му цифра е нула или пет.
Пример:определи дали числото 34938 се дели на 5.
Решение:погледнете последната цифра: 8 означава, че числото НЕ се дели на пет.

4. Признак за делимост на числото на 9
Този знак е много подобен на знака за делимост на три: едно число се дели на 9, когато сборът от неговите цифри се дели на 9.
Пример:определи дали числото 34938 се дели на 9.
Решение:изчисляваме сумата от цифрите: 3+4+9+3+8 = 27. 27 се дели на 9, което означава, че числото се дели на девет.

Как да намерим GCD и LCM на две числа

Как да намерим НОД на две числа

Най-лесният начин за изчисляване на най-големия общ делител на две числа е да намерите всички възможни делители на тези числа и да изберете най-големия от тях.

Разгледайте този метод, като използвате примера за намиране на GCD(28, 36):

  1. Разлагаме двете числа на множители: 28 = 1 2 2 7 , 36 = 1 2 2 3 3
  2. Намираме общи множители, тоест тези, които имат и двете числа: 1, 2 и 2.
  3. Изчисляваме произведението на тези фактори: 1 2 2 \u003d 4 - това е най-големият общ делител на числата 28 и 36.

Как да намерим LCM на две числа

Има два най-често срещани начина за намиране на най-малкото кратно на две числа. Първият начин е, че можете да напишете първите кратни на две числа и след това да изберете сред тях такова число, което ще бъде общо за двете числа и в същото време най-малкото. И второто е да намерим НОД на тези числа. Нека просто го разгледаме.

За да изчислите LCM, трябва да изчислите произведението на оригиналните числа и след това да го разделите на предварително намерения GCD. Нека намерим LCM за същите числа 28 и 36:

  1. Намерете произведението на числата 28 и 36: 28 36 = 1008
  2. gcd(28, 36) вече е известно, че е 4
  3. LCM(28, 36) = 1008 / 4 = 252.

Намиране на GCD и LCM за множество числа

Най-големият общ делител може да се намери за няколко числа, а не само за две. За тази цел числата, които трябва да се намерят за най-големия общ делител, се разлагат на прости множители, след което се намира произведението на общите прости множители на тези числа. Освен това, за да намерите GCD на няколко числа, можете да използвате следната връзка: gcd(a, b, c) = gcd(gcd(a, b), c).

Подобна връзка важи и за най-малкото общо кратно на числа: LCM(a, b, c) = LCM(LCM(a, b), c)

Пример:намерете GCD и LCM за числата 12, 32 и 36.

  1. Първо, нека разложим числата на множители: 12 = 1 2 2 3 , 32 = 1 2 2 2 2 2 , 36 = 1 2 2 3 3 .
  2. Нека намерим общи множители: 1, 2 и 2 .
  3. Техният продукт ще даде gcd: 1 2 2 = 4
  4. Сега нека намерим LCM: за това първо намираме LCM(12, 32): 12 32 / 4 = 96 .
  5. За да намерите НОК на трите числа, трябва да намерите НОД(96, 36): 96 = 1 2 2 2 2 2 3 , 36 = 1 2 2 3 3 , НОД = 1 2 .2 3 = 12 .
  6. LCM(12, 32, 36) = 96 36 / 12 = 288 .


Подобни статии