Намиране на площта на извит трапец. Намиране на площта на фигура, ограничена от линиите y=f(x), x=g(y)

Задача № 3. Направете чертеж и изчислете площта на фигурата, ограничена от линиите

Приложение на интеграла за решаване на приложни задачи

Изчисляване на площ

Определеният интеграл на непрекъсната неотрицателна функция f(x) е числено равен наплощта на криволинейния трапец, ограничен от кривата y = f(x), оста O x и правите линии x = a и x = b. В съответствие с това формулата за площ се записва, както следва:

Нека да разгледаме някои примери за изчисляване на площите на равнинни фигури.

Задача № 1. Да се ​​изчисли площта, ограничена от правите y = x 2 +1, y = 0, x = 0, x = 2.

Решение.Нека построим фигура, чиято площ ще трябва да изчислим.

y = x 2 + 1 е парабола, чиито клонове са насочени нагоре и параболата е изместена нагоре с една единица спрямо оста O y (Фигура 1).

Фигура 1. Графика на функцията y = x 2 + 1

Задача № 2. Изчислете площта, ограничена от правите y = x 2 – 1, y = 0 в диапазона от 0 до 1.


Решение.Графиката на тази функция е парабола от клонове, които са насочени нагоре и параболата е изместена спрямо оста O y надолу с една единица (Фигура 2).

Фигура 2. Графика на функцията y = x 2 – 1


Задача № 3. Направете чертеж и изчислете площта на фигурата, ограничена от линиите

y = 8 + 2x – x 2 и y = 2x – 4.

Решение.Първата от тези две линии е парабола с клони, насочени надолу, тъй като коефициентът на x 2 е отрицателен, а втората линия е права линия, пресичаща двете координатни оси.

За да построим парабола, намираме координатите на нейния връх: y’=2 – 2x; 2 – 2x = 0, x = 1 – абсцисата на върха; y(1) = 8 + 2∙1 – 1 2 = 9 е неговата ордината, N(1;9) е върхът.

Сега нека намерим пресечните точки на параболата и правата, като решим системата от уравнения:

Приравняване на десните страни на уравнение, чиито леви страни са равни.

Получаваме 8 + 2x – x 2 = 2x – 4 или x 2 – 12 = 0, откъдето .

И така, точките са пресечните точки на парабола и права линия (Фигура 1).


Фигура 3 Графики на функциите y = 8 + 2x – x 2 и y = 2x – 4

Да построим права линия y = 2x – 4. Тя минава през точките (0;-4), (2;0) на координатните оси.

За да конструирате парабола, можете също да използвате нейните пресечни точки с оста 0x, т.е. корените на уравнението 8 + 2x – x 2 = 0 или x 2 – 2x – 8 = 0. Използвайки теоремата на Виета, е лесно за да намерите неговите корени: x 1 = 2, x 2 = 4.

Фигура 3 показва фигура (параболичен сегмент M 1 N M 2), ограничена от тези линии.

Втората част от проблема е да се намери площта на тази фигура. Площта му може да се намери с помощта на определен интеграл по формулата .

Във връзка с това условие получаваме интеграла:

2 Изчисляване на обема на ротационно тяло

Обемът на тялото, получен от въртенето на кривата y = f(x) около оста O x, се изчислява по формулата:

При завъртане около оста O y формулата изглежда така:

Задача No4. Определете обема на тялото, получено от въртенето на извит трапец, ограничен от прави x = 0 x = 3 и крива y = около оста O x.

Решение.Нека нарисуваме картина (Фигура 4).

Фигура 4. Графика на функцията y =

Необходимият обем е


Задача No5. Изчислете обема на тялото, получено от въртенето на извит трапец, ограничен от кривата y = x 2 и прави линии y = 0 и y = 4 около оста O y.

Решение.Ние имаме:

Въпроси за преглед









Назад напред

внимание! Визуализациите на слайдове са само за информационни цели и може да не представят всички характеристики на презентацията. Ако се интересувате от тази работа, моля, изтеглете пълната версия.

Ключови думи:цялостен, криволинеен трапец, площ от фигури, ограничена от лилии

Оборудване: маркерна дъска, компютър, мултимедиен проектор

Тип урок: урок-лекция

Цели на урока:

  • образователен:създаване на култура на умствен труд, създаване на ситуация на успех за всеки ученик и създаване на положителна мотивация за учене; развийте способността да говорите и да слушате другите.
  • развитие:формиране на независимо мислене на ученика при прилагане на знания в различни ситуации, способност за анализ и изводи, развитие на логиката, развитие на способността за правилно поставяне на въпроси и намиране на отговори на тях. Подобряване на формирането на изчислителни умения, развиване на мисленето на учениците в хода на изпълнение на предложените задачи, развиване на алгоритмична култура.
  • образователен: да се формират понятия за криволинеен трапец, за интеграл, да се овладеят умения за изчисляване на площите на равнинни фигури.

Метод на обучение:обяснителни и илюстративни.

По време на часовете

В предишните класове се научихме да изчисляваме площите на фигури, чиито граници са начупени линии. В математиката има методи, които ви позволяват да изчислявате площите на фигури, ограничени от криви. Такива фигури се наричат ​​криволинейни трапеци и тяхната площ се изчислява с помощта на антипроизводни.

Криволинеен трапец ( слайд 1)

Извит трапец е фигура, ограничена от графиката на функция, ( ш.м.), прав х = аИ x = bи оста x

Различни видове извити трапеци ( слайд 2)

Разглеждаме различни видове криволинейни трапеци и забелязваме: една от правите е изродена в точка, ролята на ограничаваща функция се играе от правата

Площ на извит трапец (слайд 3)

Фиксирайте левия край на интервала а,и дясната хще променим, т.е. преместваме дясната стена на криволинейния трапец и получаваме променяща се фигура. Площта на променлив криволинеен трапец, ограничен от графиката на функцията, е първоизводна Еза функция f

И на сегмента [ а; b] площ на криволинеен трапец, образуван от функцията е,е равно на нарастването на първоизводната на тази функция:

Упражнение 1:

Намерете площта на криволинейния трапец, ограничен от графиката на функцията: f(x) = x 2и прав y = 0, x = 1, x = 2.

Решение: ( според алгоритъма слайд 3)

Нека начертаем графика на функцията и линии

Нека намерим една от първоизводните на функцията f(x) = x 2 :

Самопроверка на слайд

Интеграл

Да разгледаме криволинейния трапец, определен от функцията fна сегмента [ а; b]. Нека разделим този сегмент на няколко части. Площта на целия трапец ще бъде разделена на сумата от площите на по-малките извити трапеци. ( слайд 5). Всеки такъв трапец може приблизително да се счита за правоъгълник. Сумата от площите на тези правоъгълници дава приблизителна представа за цялата площ на извития трапец. Колкото по-малко разделяме сегмента [ а; b], толкова по-точно изчисляваме площта.

Нека запишем тези аргументи под формата на формули.

Разделете сегмента [ а; b] на n части по точки x 0 =a, x1,...,xn = b.Дължина к- th означават с xk = xk – xk-1. Да направим сума

Геометрично тази сума представлява площта на фигурата, защрихована на фигурата ( ш.м.)

Сумите от формата се наричат ​​интегрални суми за функцията f. (ш.м.)

Интегралните суми дават приблизителна стойност на площта. Точната стойност се получава чрез преминаване към границата. Нека си представим, че прецизираме разделянето на сегмента [ а; b], така че дължините на всички малки сегменти да клонят към нула. Тогава площта на съставената фигура ще се доближи до площта на извития трапец. Можем да кажем, че площта на извит трапец е равна на границата на интегралните суми, наук. (ш.м.)или интегрална, т.е.

определение:

Интеграл на функция f(x)от апреди bнаречена граница на интегралните суми

= (ш.м.)

Формула на Нютон-Лайбниц.

Спомняме си, че границата на интегралните суми е равна на площта на криволинейния трапец, което означава, че можем да напишем:

наук. = (ш.м.)

От друга страна, площта на извит трапец се изчислява по формулата

С к.т. (ш.м.)

Сравнявайки тези формули, получаваме:

= (ш.м.)

Това равенство се нарича формула на Нютон-Лайбниц.

За по-лесно изчисление формулата се записва така:

= = (ш.м.)

Задачи: (ш.м.)

1. Изчислете интеграла, като използвате формулата на Нютон-Лайбниц: ( проверете на слайд 5)

2. Съставете интеграли според чертежа ( проверете на слайд 6)

3. Намерете площта на фигурата, ограничена от линиите: y = x 3, y = 0, x = 1, x = 2. ( Слайд 7)

Намиране на площите на равнинни фигури ( слайд 8)

Как да намерите площта на фигури, които не са извити трапеци?

Нека са дадени две функции, чиито графики виждате на слайда . (ш.м.)Намерете площта на защрихованата фигура . (ш.м.). Въпросната фигура извит трапец ли е? Как можете да намерите неговата площ, като използвате свойството за адитивност на площта? Помислете за два извити трапеца и извадете площта на другия от площта на единия от тях ( ш.м.)

Нека създадем алгоритъм за намиране на областта с помощта на анимация на слайд:

  1. Графични функции
  2. Проектирайте пресечните точки на графиките върху оста x
  3. Засенчете фигурата, получена при пресичането на графиките
  4. Намерете криволинейни трапеци, чиято пресечна точка или обединение е дадената фигура.
  5. Изчислете площта на всеки от тях
  6. Намерете разликата или сбора на площите

Устна задача: Как да получите площта на защрихована фигура (кажете с помощта на анимация, слайд 8 и 9)

Домашна работа:Разработете бележките, № 353 (а), № 364 (а).

Библиография

  1. Алгебра и началото на анализа: учебник за 9-11 клас на вечерно (сменно) училище / изд. Г.Д. Глейзър. - М: Просвещение, 1983.
  2. Башмаков M.I. Алгебра и началото на анализа: учебник за 10-11 клас на средното училище / Башмаков M.I. - М: Просвещение, 1991.
  3. Башмаков M.I. Математика: учебник за институции нач. и сряда проф. образование / M.I. Башмаков. - М: Академия, 2010.
  4. Колмогоров A.N. Алгебра и начало на анализа: учебник за 10-11 клас. образователни институции / А. Н. Колмогоров. - М: Образование, 2010.
  5. Островски С.Л. Как да направите презентация за урок?/ S.L. Островски. – М.: 1 септември 2010 г.

В тази статия ще научите как да намерите площта на фигура, ограничена от линии, като използвате интегрални изчисления. За първи път се сблъскваме с формулирането на такава задача в гимназията, когато току-що сме завършили изучаването на определени интеграли и е време да започнем геометричната интерпретация на усвоените знания на практика.

И така, какво е необходимо за успешно решаване на проблема с намирането на площта на фигура с помощта на интеграли:

  • Способност да прави компетентни чертежи;
  • Способност за решаване на определен интеграл с помощта на добре познатата формула на Нютон-Лайбниц;
  • Способността да „видите“ по-изгодна опция за решение - т.е. разберете как ще бъде по-удобно да се извърши интеграция в един или друг случай? По оста x (OX) или по оста y (OY)?
  • Е, къде щяхме да бъдем без правилни изчисления?) Това включва разбиране как да се решава този друг тип интеграли и правилни числени изчисления.

Алгоритъм за решаване на проблема за изчисляване на площта на фигура, ограничена от линии:

1. Изграждаме чертеж. Препоръчително е да направите това на кариран лист хартия, в голям мащаб. Подписваме името на тази функция с молив над всяка графика. Подписването на графиките се извършва единствено за удобство на по-нататъшни изчисления. След като получите графика на желаната фигура, в повечето случаи веднага ще стане ясно кои граници на интегриране ще се използват. Така решаваме задачата графично. Случва се обаче стойностите на границите да са дробни или ирационални. Следователно можете да направите допълнителни изчисления, преминете към втора стъпка.

2. Ако границите на интегриране не са изрично посочени, тогава намираме точките на пресичане на графиките една с друга и виждаме дали нашето графично решение съвпада с аналитичното.

3. След това трябва да анализирате чертежа. В зависимост от това как са подредени графиките на функциите, има различни подходи за намиране на площта на фигура. Нека да разгледаме различни примери за намиране на площта на фигура с помощта на интеграли.

3.1. Най-класическата и най-проста версия на проблема е, когато трябва да намерите площта на извит трапец. Какво е извит трапец? Това е плоска фигура, ограничена от оста x (y = 0), направо x = a, x = bи всяка крива, непрекъсната на интервала от апреди b. Освен това тази цифра е неотрицателна и не се намира под оста x. В този случай площта на криволинейния трапец е числено равна на определен интеграл, изчислен по формулата на Нютон-Лайбниц:

Пример 1 y = x2 – 3x + 3, x = 1, x = 3, y = 0.

С какви линии е ограничена фигурата? Имаме парабола y = x2 – 3x + 3, който се намира над ос ОХ, то е неотрицателно, защото всички точки на тази парабола имат положителни стойности. На следващо място, дадени прави линии х = 1И х = 3, които вървят успоредно на оста OU, са граничните линии на фигурата отляво и отдясно. добре y = 0, това е и оста x, която ограничава фигурата отдолу. Получената фигура е защрихована, както се вижда от фигурата вляво. В този случай можете веднага да започнете да решавате проблема. Пред нас е прост пример за извит трапец, който след това решаваме с помощта на формулата на Нютон-Лайбниц.

3.2. В предишния параграф 3.1 разгледахме случая, когато извит трапец е разположен над оста x. Сега разгледайте случая, когато условията на проблема са същите, с изключение на това, че функцията лежи под оста x. Към стандартната формула на Нютон-Лайбниц се добавя минус. Ще разгледаме как да разрешим такъв проблем по-долу.

Пример 2 . Изчислете площта на фигура, ограничена от линии y = x2 + 6x + 2, x = -4, x = -1, y = 0.

В този пример имаме парабола y = x2 + 6x + 2, която произхожда от ос ОХ, направо x = -4, x = -1, y = 0. Тук y = 0ограничава желаната фигура отгоре. Директен х = -4И х = -1това са границите, в които ще бъде изчислен определеният интеграл. Принципът на решаване на проблема за намиране на площта на фигура почти напълно съвпада с пример номер 1. Единствената разлика е, че дадената функция не е положителна, а също така е непрекъсната на интервала [-4; -1] . Какво имаш предвид не положително? Както може да се види от фигурата, фигурата, която се намира в рамките на дадените x, има изключително „отрицателни“ координати, което трябва да видим и запомним, когато решаваме задачата. Търсим площта на фигурата, използвайки формулата на Нютон-Лайбниц, само със знак минус в началото.

Статията не е завършена.

В предишния раздел, посветен на анализа на геометричния смисъл на определен интеграл, получихме редица формули за изчисляване на площта на криволинейния трапец:

Yandex.RTB R-A-339285-1

S (G) = ∫ a b f (x) d x за непрекъсната и неотрицателна функция y = f (x) на интервала [ a ; б],

S (G) = - ∫ a b f (x) d x за непрекъсната и неположителна функция y = f (x) на интервала [ a ; b ] .

Тези формули са приложими за решаване на относително прости задачи. В действителност често ще трябва да работим с по-сложни фигури. В тази връзка ще посветим този раздел на анализ на алгоритми за изчисляване на площта на фигури, които са ограничени от функции в изрична форма, т.е. като y = f(x) или x = g(y).

Теорема

Нека функциите y = f 1 (x) и y = f 2 (x) са дефинирани и непрекъснати на интервала [ a ; b ] и f 1 (x) ≤ f 2 (x) за всяка стойност x от [ a ; b ] . Тогава формулата за изчисляване на площта на фигурата G, ограничена от линиите x = a, x = b, y = f 1 (x) и y = f 2 (x), ще изглежда като S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Подобна формула ще бъде приложима за площта на фигура, ограничена от линиите y = c, y = d, x = g 1 (y) и x = g 2 (y): S (G) = ∫ c d ( g 2 (y) - g 1 (y) d y .

Доказателство

Нека разгледаме три случая, за които формулата ще бъде валидна.

В първия случай, като се вземе предвид свойството на адитивност на площта, сумата от площите на оригиналната фигура G и криволинейния трапец G 1 е равна на площта на фигурата G 2. Означава, че

Следователно S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

Можем да извършим последния преход, използвайки третото свойство на определения интеграл.

Във втория случай равенството е вярно: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - f 1 (x)) d x

Графичната илюстрация ще изглежда така:

Ако и двете функции са неположителни, получаваме: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Графичната илюстрация ще изглежда така:

Нека да преминем към разглеждане на общия случай, когато y = f 1 (x) и y = f 2 (x) пресичат оста O x.

Означаваме пресечните точки като x i, i = 1, 2, . . . , n - 1 . Тези точки разделят сегмента [a; b] на n части x i-1; x i, i = 1, 2, . . . , n, където α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

следователно

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Можем да направим последния преход, използвайки петото свойство на определения интеграл.

Нека илюстрираме общия случай на графиката.

Формулата S (G) = ∫ a b f 2 (x) - f 1 (x) d x може да се счита за доказана.

Сега нека да преминем към анализиране на примери за изчисляване на площта на фигури, които са ограничени от линиите y = f (x) и x = g (y).

Ще започнем разглеждането на всеки от примерите, като построим графика. Изображението ще ни позволи да представим сложни форми като обединение на по-прости форми. Ако конструирането на графики и фигури върху тях е трудно за вас, можете да изучавате раздела за основни елементарни функции, геометрична трансформация на графики на функции, както и конструиране на графики, докато изучавате функция.

Пример 1

Необходимо е да се определи площта на фигурата, която е ограничена от параболата y = - x 2 + 6 x - 5 и правите линии y = - 1 3 x - 1 2, x = 1, x = 4.

Решение

Нека начертаем линиите на графиката в декартовата координатна система.

На отсечката [ 1 ; 4 ] графиката на параболата y = - x 2 + 6 x - 5 е разположена над правата линия y = - 1 3 x - 1 2. В тази връзка, за да получим отговора, използваме формулата, получена по-рано, както и метода за изчисляване на определения интеграл, използвайки формулата на Нютон-Лайбниц:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Отговор: S(G) = 13

Нека да разгледаме по-сложен пример.

Пример 2

Необходимо е да се изчисли площта на фигурата, която е ограничена от линиите y = x + 2, y = x, x = 7.

Решение

В този случай имаме само една права линия, разположена успоредно на оста x. Това е x = 7. Това изисква сами да намерим втората граница на интеграция.

Нека построим графика и върху нея да начертаем линиите, дадени в постановката на задачата.

Като имаме графиката пред очите си, лесно можем да определим, че долната граница на интегриране ще бъде абсцисата на пресечната точка на графиката на правата линия y = x и полупараболата y = x + 2. За намиране на абсцисата използваме равенствата:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

Оказва се, че абсцисата на пресечната точка е x = 2.

Обръщаме внимание на факта, че в общия пример на чертежа линиите y = x + 2, y = x се пресичат в точката (2; 2), така че такива подробни изчисления може да изглеждат ненужни. Предоставихме толкова подробно решение тук само защото в по-сложни случаи решението може да не е толкова очевидно. Това означава, че винаги е по-добре да се изчислят координатите на пресечната точка на линиите аналитично.

На интервала [ 2 ; 7] графиката на функцията y = x се намира над графиката на функцията y = x + 2. Нека приложим формулата за изчисляване на площта:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Отговор: S (G) = 59 6

Пример 3

Необходимо е да се изчисли площта на фигурата, която е ограничена от графиките на функциите y = 1 x и y = - x 2 + 4 x - 2.

Решение

Нека начертаем линиите на графиката.

Нека дефинираме границите на интеграцията. За да направите това, ние определяме координатите на точките на пресичане на линиите, като приравняваме изразите 1 x и - x 2 + 4 x - 2. При условие, че x не е нула, равенството 1 x = - x 2 + 4 x - 2 става еквивалентно на уравнение от трета степен - x 3 + 4 x 2 - 2 x - 1 = 0 с цели коефициенти. За да опресните паметта си за алгоритъма за решаване на такива уравнения, можем да се обърнем към раздела „Решаване на кубични уравнения“.

Коренът на това уравнение е x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

Разделяйки израза - x 3 + 4 x 2 - 2 x - 1 на бинома x - 1, получаваме: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Можем да намерим останалите корени от уравнението x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

Намерихме интервала x ∈ 1; 3 + 13 2, в която фигурата G се съдържа над синята и под червената линия. Това ни помага да определим площта на фигурата:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Отговор: S (G) = 7 + 13 3 - ln 3 + 13 2

Пример 4

Необходимо е да се изчисли площта на фигурата, която е ограничена от кривите y = x 3, y = - log 2 x + 1 и абсцисната ос.

Решение

Нека начертаем всички линии на графиката. Можем да получим графиката на функцията y = - log 2 x + 1 от графиката y = log 2 x, ако я позиционираме симетрично спрямо оста x и я преместим с една единица нагоре. Уравнението на оста x е y = 0.

Нека маркираме точките на пресичане на линиите.

Както се вижда от фигурата, графиките на функциите y = x 3 и y = 0 се пресичат в точката (0; 0). Това се случва, защото x = 0 е единственият реален корен на уравнението x 3 = 0.

x = 2 е единственият корен на уравнението - log 2 x + 1 = 0, така че графиките на функциите y = - log 2 x + 1 и y = 0 се пресичат в точката (2; 0).

x = 1 е единственият корен на уравнението x 3 = - log 2 x + 1 . В тази връзка графиките на функциите y = x 3 и y = - log 2 x + 1 се пресичат в точката (1; 1). Последното твърдение може да не е очевидно, но уравнението x 3 = - log 2 x + 1 не може да има повече от един корен, тъй като функцията y = x 3 е строго нарастваща, а функцията y = - log 2 x + 1 е строго намаляващ.

По-нататъшното решение включва няколко опции.

Опция 1

Можем да си представим фигурата G като сбор от два криволинейни трапеца, разположени над оста x, първият от които е разположен под средната линия на сегмента x ∈ 0; 1, а втората е под червената линия на отсечката x ∈ 1; 2. Това означава, че площта ще бъде равна на S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Вариант №2

Фигура G може да бъде представена като разлика от две фигури, първата от които е разположена над оста x и под синята линия на сегмента x ∈ 0; 2, а втората между червената и синята линия на отсечката x ∈ 1; 2. Това ни позволява да намерим района, както следва:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

В този случай, за да намерите площта, ще трябва да използвате формула от вида S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. Всъщност линиите, които ограничават фигурата, могат да бъдат представени като функции на аргумента y.

Нека решим уравненията y = x 3 и - log 2 x + 1 по отношение на x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Получаваме необходимата площ:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Отговор: S (G) = 1 ln 2 - 1 4

Пример 5

Необходимо е да се изчисли площта на фигурата, която е ограничена от линиите y = x, y = 2 3 x - 3, y = - 1 2 x + 4.

Решение

С червена линия начертаваме линията, определена от функцията y = x. Начертаваме линията y = - 1 2 x + 4 в синьо, а линията y = 2 3 x - 3 в черно.

Нека маркираме пресечните точки.

Нека намерим пресечните точки на графиките на функциите y = x и y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 Проверка: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 не е решението на уравнението x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 е решението на уравнението ⇒ (4; 2) пресечна точка i y = x и y = - 1 2 x + 4

Нека намерим пресечната точка на графиките на функциите y = x и y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Проверка: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 е решението на уравнението ⇒ (9 ; 3) точка a s y = x и y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 Няма решение на уравнението

Нека намерим пресечната точка на правите y = - 1 2 x + 4 и y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1 ) пресечна точка y = - 1 2 x + 4 и y = 2 3 x - 3

Метод №1

Нека си представим площта на желаната фигура като сбор от площите на отделните фигури.

Тогава площта на фигурата е:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Метод № 2

Площта на оригиналната фигура може да бъде представена като сбор от две други фигури.

След това решаваме уравнението на линията спрямо x и едва след това прилагаме формулата за изчисляване на площта на фигурата.

y = x ⇒ x = y 2 червена линия y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 черна линия y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

Така че площта е:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

Както можете да видите, стойностите са еднакви.

Отговор: S (G) = 11 3

Резултати

За да намерим площта на фигура, която е ограничена от дадени линии, трябва да построим линии в равнина, да намерим техните пресечни точки и да приложим формулата, за да намерим площта. В този раздел разгледахме най-често срещаните варианти на задачи.

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter



Подобни статии