Формули за киселинни реакции. Киселини: класификация и химични свойства

Класификация на неорганични вещества с примери за съединения

Сега нека анализираме по-подробно схемата за класификация, представена по-горе.

Както виждаме, на първо място, всички неорганични вещества са разделени на простоИ комплекс:

Прости вещества Това са вещества, които са образувани от атоми само на един химичен елемент. Например прости вещества са водород H2, кислород O2, желязо Fe, въглерод C и др.

Сред простите вещества има метали, неметалиИ благородни газове:

Металиобразувани от химически елементи, разположени под диагонала бор-астат, както и всички елементи, разположени в странични групи.

Благородни газовеобразувани от химични елементи от група VIIIA.

Неметалисе образуват съответно от химични елементи, разположени над диагонала бор-астат, с изключение на всички елементи от странични подгрупи и благородни газове, разположени в група VIIIA:

Имената на простите вещества най-често съвпадат с имената на химичните елементи, от чиито атоми са образувани. Но за много химични елементи явлението алотропия е широко разпространено. Алотропията е явлението, когато един химичен елемент е способен да образува няколко прости вещества. Например в случая на химичния елемент кислород е възможно съществуването на молекулни съединения с формули O 2 и O 3 . Първото вещество обикновено се нарича кислород по същия начин като химичния елемент, чиито атоми се образува, а второто вещество (O 3) обикновено се нарича озон. Простото вещество въглерод може да означава всяка негова алотропна модификация, например диамант, графит или фулерени. Простото вещество фосфор може да се разбира като неговите алотропни модификации, като бял фосфор, червен фосфор, черен фосфор.

Сложни вещества

Сложни вещества са вещества, образувани от атоми на два или повече химични елемента.

Например сложни вещества са амоняк NH 3, сярна киселина H 2 SO 4, гасена вар Ca (OH) 2 и безброй други.

Сред сложните неорганични вещества има 5 основни класа, а именно оксиди, основи, амфотерни хидроксиди, киселини и соли:

Оксиди - сложни вещества, образувани от два химични елемента, единият от които е кислород в степен на окисление -2.

Общата формула на оксидите може да бъде записана като E x O y, където E е символът на химичен елемент.

Номенклатура на оксидите

Името на оксида на химичен елемент се основава на принципа:

Например:

Fe 2 O 3 - железен (III) оксид; CuO—меден(II) оксид; N 2 O 5 - азотен оксид (V)

Често можете да намерите информация, че валентността на даден елемент е посочена в скоби, но това не е така. Така например степента на окисление на азота N 2 O 5 е +5, а валентността, колкото и да е странно, е четири.

Ако даден химичен елемент има едно положително състояние на окисление в съединенията, тогава степента на окисление не е посочена. Например:

Na 2 O - натриев оксид; H 2 O - водороден оксид; ZnO - цинков оксид.

Класификация на оксидите

Оксидите, според способността им да образуват соли при взаимодействие с киселини или основи, се разделят съответно на солеобразуващиИ несолеобразуващи.

Има малко несолеобразуващи оксиди; всички те са образувани от неметали в степен на окисление +1 и +2. Трябва да се помни списъкът на не-солеобразуващите оксиди: CO, SiO, N 2 O, NO.

Солеобразуващите оксиди от своя страна се делят на основен, киселиненИ амфотерни.

Основни оксидиТова са оксиди, които при взаимодействие с киселини (или киселинни оксиди) образуват соли. Основните оксиди включват метални оксиди в степен на окисление +1 и +2, с изключение на оксидите BeO, ZnO, SnO, PbO.

Киселинни оксидиТова са оксиди, които при взаимодействие с основи (или основни оксиди) образуват соли. Киселинните оксиди са почти всички оксиди на неметали с изключение на несолеобразуващите CO, NO, N 2 O, SiO, както и всички метални оксиди във високи степени на окисление (+5, +6 и +7).

Амфотерни оксидисе наричат ​​оксиди, които могат да реагират както с киселини, така и с основи и в резултат на тези реакции образуват соли. Такива оксиди проявяват двойна киселинно-алкална природа, тоест те могат да проявяват свойствата както на киселинни, така и на основни оксиди. Амфотерните оксиди включват метални оксиди в степени на окисление +3, +4, както и оксидите BeO, ZnO, SnO и PbO като изключение.

Някои метали могат да образуват и трите вида солеобразуващи оксиди. Например, хромът образува основния оксид CrO, амфотерния оксид Cr 2 O 3 и киселинния оксид CrO 3.

Както можете да видите, киселинно-алкалните свойства на металните оксиди директно зависят от степента на окисляване на метала в оксида: колкото по-висока е степента на окисление, толкова по-изразени са киселинните свойства.

Основания

Причини - съединения с формула Me(OH) x, където хнай-често е равно на 1 или 2.

Класификация на основите

Базите се класифицират според броя на хидроксилните групи в една структурна единица.

Основи с една хидроксо група, т.е. тип MeOH се нарича монокиселинни основи,с две хидроксо групи, т.е. тип Me(OH) 2, съответно, дикиселинаи т.н.

Основите също се делят на разтворими (алкали) и неразтворими.

Алкалите включват изключително хидроксиди на алкални и алкалоземни метали, както и талиев хидроксид TlOH.

Номенклатура на базите

Името на фондацията се основава на следния принцип:

Например:

Fe(OH) 2 - железен (II) хидроксид,

Cu(OH) 2 - меден (II) хидроксид.

В случаите, когато металът в сложните вещества има постоянно състояние на окисление, не е необходимо да го посочвате. Например:

NaOH - натриев хидроксид,

Ca(OH) 2 - калциев хидроксид и др.

Киселини

Киселини - сложни вещества, чиито молекули съдържат водородни атоми, които могат да бъдат заменени с метал.

Общата формула на киселините може да бъде написана като H x A, където H са водородни атоми, които могат да бъдат заменени с метал, а A е киселинният остатък.

Например киселините включват съединения като H2SO4, HCl, HNO3, HNO2 и др.

Класификация на киселините

Според броя на водородните атоми, които могат да бъдат заменени с метал, киселините се делят на:

- О основни киселини: HF, HCI, HBr, HI, HNO3;

- д основни киселини: H2SO4, H2SO3, H2CO3;

- T рехобазни киселини: H3PO4, H3BO3.

Трябва да се отбележи, че броят на водородните атоми в случая на органичните киселини най-често не отразява тяхната основност. Например оцетната киселина с формула CH 3 COOH, въпреки наличието на 4 водородни атома в молекулата, не е четириосновна, а едноосновна. Основността на органичните киселини се определя от броя на карбоксилните групи (-СООН) в молекулата.

Също така, въз основа на наличието на кислород в молекулите, киселините се разделят на безкислородни (HF, HCl, HBr и др.) И съдържащи кислород (H 2 SO 4, HNO 3, H 3 PO 4 и др.) . Кислородсъдържащите киселини се наричат ​​още оксокиселини.

Можете да прочетете повече за класификацията на киселините.

Номенклатура на киселини и киселинни остатъци

Следният списък с имена и формули на киселини и киселинни остатъци трябва да се научи.

В някои случаи някои от следните правила могат да улеснят запаметяването.

Както може да се види от таблицата по-горе, конструкцията на систематичните имена на безкислородни киселини е както следва:

Например:

HF—флуороводородна киселина;

HCl - солна киселина;

H2S е хидросулфидна киселина.

Имената на киселинните остатъци на безкислородните киселини се основават на принципа:

Например Cl - - хлорид, Br - - бромид.

Имената на кислородсъдържащите киселини се получават чрез добавяне на различни наставки и окончания към името на киселинообразуващия елемент. Например, ако киселиннообразуващият елемент в кислородсъдържаща киселина има най-висока степен на окисление, тогава името на такава киселина се конструира, както следва:

Например сярна киселина H 2 S +6 O 4, хромова киселина H 2 Cr +6 O 4.

Всички кислородсъдържащи киселини също могат да бъдат класифицирани като киселинни хидроксиди, тъй като съдържат хидроксилни групи (ОН). Например, това може да се види от следните графични формули на някои кислородсъдържащи киселини:

Така сярната киселина иначе може да се нарече серен (VI) хидроксид, азотната киселина - азотен (V) хидроксид, фосфорната киселина - фосфорен (V) хидроксид и т.н. В този случай числото в скоби характеризира степента на окисляване на киселинно образуващия елемент. Тази версия на имената на кислородсъдържащите киселини може да изглежда изключително необичайна за мнозина, но понякога такива имена могат да бъдат намерени в реални KIM на Единния държавен изпит по химия в задачи за класификация на неорганични вещества.

Амфотерни хидроксиди

Амфотерни хидроксиди - метални хидроксиди, проявяващи двойна природа, т.е. способен да проявява както свойствата на киселини, така и свойствата на основи.

Металните хидроксиди в степени на окисление +3 и +4 са амфотерни (както и оксидите).

Също така, като изключение, амфотерните хидроксиди включват съединенията Be (OH) 2, Zn (OH) 2, Sn (OH) 2 и Pb (OH) 2, въпреки степента на окисление на метала в тях +2.

За амфотерни хидроксиди на три- и четиривалентни метали е възможно съществуването на орто- и мета-форми, които се различават една от друга с една водна молекула. Например алуминиевият(III) хидроксид може да съществува в ортоформата Al(OH)3 или метаформата AlO(OH) (метахидроксид).

Тъй като, както вече беше споменато, амфотерните хидроксиди проявяват както свойствата на киселините, така и свойствата на основите, тяхната формула и име също могат да бъдат написани по различен начин: или като основа, или като киселина. Например:

соли

Например, солите включват съединения като KCl, Ca(NO 3) 2, NaHCO 3 и др.

Дефиницията, представена по-горе, описва състава на повечето соли, но има соли, които не попадат в нея. Например, вместо метални катиони, солта може да съдържа амониеви катиони или негови органични производни. Тези. соли включват съединения като например (NH4)2SO4 (амониев сулфат), + Cl-(метиламониев хлорид) и др.

Класификация на солите

От друга страна, солите могат да се разглеждат като продукти на заместване на водородни катиони H + в киселина с други катиони или като продукти на заместване на хидроксидни йони в основи (или амфотерни хидроксиди) с други аниони.

При пълна подмяна, т.нар средно аритметичноили нормалносол. Например, при пълно заместване на водородните катиони в сярна киселина с натриеви катиони се образува средна (нормална) сол Na 2 SO 4 и при пълно заместване на хидроксидните йони в основата Ca (OH) 2 с киселинни остатъци от нитратни йони , се образува средна (нормална) сол Ca(NO3)2.

Солите, получени чрез непълно заместване на водородни катиони в двуосновна (или повече) киселина с метални катиони, се наричат ​​кисели. Така, когато водородните катиони в сярната киселина са непълно заменени с натриеви катиони, се образува киселинната сол NaHSO 4.

Соли, които се образуват чрез непълно заместване на хидроксидни йони в двукиселинни (или повече) основи, се наричат ​​основи. Осилни соли. Например, при непълно заместване на хидроксидните йони в основата Ca (OH) 2 с нитратни йони се образува основа Обистра сол Ca(OH)NO3.

Соли, състоящи се от катиони на два различни метала и аниони на киселинни остатъци само на една киселина, се наричат двойни соли. Така например двойните соли са KNaCO 3, KMgCl 3 и т.н.

Ако една сол се образува от един вид катиони и два вида киселинни остатъци, такива соли се наричат ​​смесени. Например смесени соли са съединенията Ca(OCl)Cl, CuBrCl и др.

Има соли, които не попадат в дефиницията на соли като продукти на заместване на водородни катиони в киселини с метални катиони или продукти на заместване на хидроксидни йони в основи с аниони на киселинни остатъци. Това са комплексни соли. Например комплексни соли са натриев тетрахидроксоцинкат и тетрахидроксоалуминат с формули съответно Na 2 и Na. Комплексните соли най-често могат да бъдат разпознати сред другите по наличието на квадратни скоби във формулата. Трябва обаче да разберете, че за да може едно вещество да бъде класифицирано като сол, то трябва да съдържа някои катиони, различни от (или вместо) H +, а анионите трябва да съдържат някои аниони, различни от (или вместо) OH - . Например съединението Н2 не принадлежи към класа на комплексните соли, тъй като когато се дисоциира от катиони, в разтвора присъстват само водородни катиони Н+. Въз основа на вида на дисоциацията, това вещество по-скоро трябва да се класифицира като безкислородна комплексна киселина. По същия начин OH съединението не принадлежи към солите, т.к това съединение се състои от катиони + и хидроксидни йони ОН -, т.е. трябва да се счита за цялостна основа.

Номенклатура на солите

Номенклатура на средни и киселинни соли

Името на средните и киселинните соли се основава на принципа:

Ако степента на окисление на метал в сложни вещества е постоянна, тогава тя не е посочена.

Имената на киселинните остатъци бяха дадени по-горе при разглеждане на номенклатурата на киселините.

Например,

Na 2 SO 4 - натриев сулфат;

NaHSO 4 - натриев хидроген сулфат;

CaCO 3 - калциев карбонат;

Ca(HCO 3) 2 - калциев бикарбонат и др.

Номенклатура на основните соли

Имената на основните соли се основават на принципа:

Например:

(CuOH) 2 CO 3 - меден (II) хидроксикарбонат;

Fe(OH) 2 NO 3 - железен (III) дихидроксонитрат.

Номенклатура на комплексните соли

Номенклатурата на комплексните съединения е много по-сложна и за да преминете Единния държавен изпит, не е необходимо да знаете много за номенклатурата на комплексните соли.

Трябва да можете да назовавате комплексни соли, получени при взаимодействие на алкални разтвори с амфотерни хидроксиди. Например:

*Същите цветове във формулата и името обозначават съответните елементи на формулата и името.

Тривиални имена на неорганични вещества

Под тривиални имена разбираме имената на вещества, които не са свързани или слабо свързани с техния състав и структура. Тривиалните имена се определят, като правило, или от исторически причини, или от физичните или химичните свойства на тези съединения.

Списък с тривиални имена на неорганични вещества, които трябва да знаете:

На 3 криолит
SiO2 кварц, силициев диоксид
FeS 2 пирит, железен пирит
CaSO 4 ∙2H 2 O гипс
CaC2 калциев карбид
Al 4 C 3 алуминиев карбид
KOH каустичен калий
NaOH сода каустик, сода каустик
H2O2 водороден прекис
CuSO 4 ∙5H 2 O меден сулфат
NH4CI амоняк
CaCO3 креда, мрамор, варовик
N2O смехотворен газ
НЕ 2 кафяв газ
NaHC03 сода бикарбонат (питейна).
Fe3O4 желязна скала
NH 3 ∙H 2 O (NH 4 OH) амоняк
CO въглероден окис
CO2 въглероден двуокис
SiC карборунд (силициев карбид)
PH 3 фосфин
NH 3 амоняк
KClO3 Бертолетова сол (калиев хлорат)
(CuOH)2CO3 малахит
CaO негасена вар
Ca(OH)2 гасена вар
прозрачен воден разтвор на Ca(OH) 2 варна вода
суспензия на твърд Са(ОН)2 в неговия воден разтвор варно мляко
K2CO3 поташ
Na 2 CO 3 калцинирана сода
Na 2 CO 3 ∙10H 2 O кристална сода
MgO магнезия

Киселиниса сложни вещества, чиито молекули включват водородни атоми, които могат да бъдат заменени или заменени с метални атоми и киселинен остатък.

Въз основа на наличието или отсъствието на кислород в молекулата киселините се делят на кислородсъдържащи(H 2 SO 4 сярна киселина, H 2 SO 3 сярна киселина, HNO 3 азотна киселина, H 3 PO 4 фосфорна киселина, H 2 CO 3 въглеродна киселина, H 2 SiO 3 силициева киселина) и без кислород(HF флуороводородна киселина, HCl солна киселина (солна киселина), HBr бромоводородна киселина, HI йодоводородна киселина, H2S хидросулфидна киселина).

В зависимост от броя на водородните атоми в киселинната молекула, киселините биват едноосновни (с 1 Н атом), двуосновни (с 2 Н атома) и триосновни (с 3 Н атома). Например, азотната киселина HNO 3 е едноосновна, тъй като нейната молекула съдържа един водороден атом, сярна киселина H 2 SO 4 двуосновен и др.

Има много малко неорганични съединения, съдържащи четири водородни атома, които могат да бъдат заменени с метал.

Частта от киселинна молекула без водород се нарича киселинен остатък.

Киселинни остатъцимогат да се състоят от един атом (-Cl, -Br, -I) - това са прости киселинни остатъци или могат да се състоят от група атоми (-SO 3, -PO 4, -SiO 3) - това са сложни остатъци.

Във водни разтвори, по време на реакции на обмен и заместване, киселинните остатъци не се разрушават:

H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

Думата анхидридозначава безводен, т.е. киселина без вода. Например,

H 2 SO 4 – H 2 O → SO 3. Аноксичните киселини нямат анхидриди.

Киселините получават името си от името на киселинообразуващия елемент (киселинно образуващ агент) с добавяне на окончанията „naya” и по-рядко „vaya”: H 2 SO 4 - сярна; H 2 SO 3 – въглища; H 2 SiO 3 – силиций и др.

Елементът може да образува няколко кислородни киселини. В този случай посочените окончания в имената на киселините ще бъдат, когато елементът проявява по-висока валентност (молекулата на киселината съдържа високо съдържание на кислородни атоми). Ако елементът проявява по-ниска валентност, окончанието в името на киселината ще бъде „празно“: HNO 3 - азотна, HNO 2 - азотна.

Киселини могат да бъдат получени чрез разтваряне на анхидриди във вода.Ако анхидридите са неразтворими във вода, киселината може да се получи чрез действието на друга по-силна киселина върху солта на необходимата киселина. Този метод е характерен както за кислородните, така и за безкислородните киселини. Безкислородните киселини също се получават чрез директен синтез от водород и неметал, последвано от разтваряне на полученото съединение във вода:

H2 + Cl2 → 2 HCl;

H 2 + S → H 2 S.

Разтворите на получените газообразни вещества HCl и H 2 S са киселини.

При нормални условия киселините съществуват както в течно, така и в твърдо състояние.

Химични свойства на киселините

Киселинните разтвори действат върху индикаторите. Всички киселини (с изключение на силициевата) са силно разтворими във вода. Специални вещества - индикатори ви позволяват да определите наличието на киселина.

Индикаторите са вещества със сложна структура. Те променят цвета си в зависимост от взаимодействието им с различни химикали. В неутралните разтвори имат един цвят, в разтворите на основите имат друг цвят. При взаимодействие с киселина те променят цвета си: индикаторът на метилоранж става червен, а индикаторът на лакмус също става червен.

Взаимодействайте с бази с образуването на вода и сол, която съдържа непроменен киселинен остатък (реакция на неутрализация):

H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

Взаимодействат с основни оксиди с образуването на вода и сол (реакция на неутрализация). Солта съдържа киселинния остатък от киселината, която е била използвана в реакцията на неутрализация:

H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

Взаимодействайте с метали. За да могат киселините да взаимодействат с металите, трябва да бъдат изпълнени определени условия:

1. металът трябва да бъде достатъчно активен по отношение на киселини (в редицата на активност на металите той трябва да бъде разположен преди водорода). Колкото по-наляво е даден метал в серията активност, толкова по-интензивно той взаимодейства с киселини;

2. киселината трябва да е достатъчно силна (т.е. способна да отдава водородни йони H +).

Когато протичат химични реакции на киселина с метали, се образува сол и се отделя водород (с изключение на взаимодействието на метали с азотна и концентрирана сярна киселина):

Zn + 2HCl → ZnCl2 + H2;

Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

Все още имате въпроси? Искате ли да знаете повече за киселините?
За да получите помощ от учител -.
Първият урок е безплатен!

blog.site, при пълно или частично копиране на материал е необходима връзка към първоизточника.

Наименования на някои неорганични киселини и соли

Киселинни формулиИмена на киселиниИмена на съответните соли
HClO4 хлор перхлорати
HClO3 хипохлорен хлорати
HClO2 хлорид хлорити
HClO хипохлорен хипохлорити
H5IO6 йод периодати
HIO 3 йодна йодати
H2SO4 сярна сулфати
H2SO3 сяра сулфити
H2S2O3 тиосяра тиосулфати
H2S4O6 тетратионов тетратионати
HNO3 азот нитрати
HNO2 азотен нитрити
H3PO4 ортофосфорен ортофосфати
HPO 3 метафосфорен метафосфати
H3PO3 фосфорни фосфити
H3PO2 фосфорни хипофосфити
H2CO3 въглища карбонати
H2SiO3 силиций силикати
HMnO4 манган перманганати
H2MnO4 манган манганати
H2CrO4 хром хромати
H2Cr2O7 дихром дихромати
HF флуороводород (флуорид) флуориди
НС1 солна (солна) хлориди
HBr бромоводородна бромиди
здрасти водороден йодид йодиди
H2S водороден сулфид сулфиди
HCN циановодород цианиди
HOCN циан цианати

Нека накратко да ви напомня, като използвам конкретни примери, как трябва да се наричат ​​правилно солите.


Пример 1. Солта K 2 SO 4 се образува от остатък от сярна киселина (SO 4) и метал K. Солите на сярната киселина се наричат ​​сулфати. K 2 SO 4 - калиев сулфат.

Пример 2. FeCl 3 - солта съдържа желязо и остатък от солна киселина (Cl). Име на солта: железен (III) хлорид. Моля, обърнете внимание: в този случай трябва не само да назовем метала, но и да посочим неговата валентност (III). В предишния пример това не беше необходимо, тъй като валентността на натрия е постоянна.

Важно: името на солта трябва да показва валентността на метала само ако металът има променлива валентност!

Пример 3. Ba(ClO) 2 - солта съдържа барий и остатъка от хипохлорна киселина (ClO). Име на солта: бариев хипохлорит. Валентността на метала Ba във всички негови съединения е две, не е необходимо да се посочва.

Пример 4. (NH 4) 2 Cr 2 O 7. Групата NH4 се нарича амоний, валентността на тази група е постоянна. Име на солта: амониев дихромат (дихромат).

В горните примери се сблъскахме само с т.нар. средни или нормални соли. Тук няма да се разглеждат киселинни, основни, двойни и комплексни соли, соли на органични киселини.

  • Физични и химични изрази на части, фракции и количества на веществото. Единица за атомна маса, a.m.u. Мол вещество, константа на Авогадро. Моларна маса. Относителна атомна и молекулна маса на веществото. Масова част на химичен елемент
  • Структура на материята. Ядрен модел на структурата на атома. Състояние на електрон в атом. Запълване на орбиталите с електрони, принцип на най-малка енергия, правило на Клечковски, принцип на Паули, правило на Хунд
  • Периодичен закон в съвременна формулировка. Периодична система. Физически смисъл на периодичния закон. Структура на периодичната таблица. Промени в свойствата на атомите на химичните елементи от основните подгрупи. План на характеристиките на химичен елемент.
  • Периодичната система на Менделеев. Висши оксиди. Летливи водородни съединения. Разтворимост, относителни молекулни тегла на соли, киселини, основи, оксиди, органични вещества. Серии от електроотрицателност, аниони, активности и напрежения на метали
  • Електрохимични серии от активности на метали и таблица с водород, електрохимични серии от напрежения на метали и водород, серии от електроотрицателност на химични елементи, серии от аниони
  • Химическа връзка. Концепции. Правило за октет. Метали и неметали. Хибридизация на електронни орбитали. Валентни електрони, понятие за валентност, понятие за електроотрицателност
  • Видове химични връзки. Ковалентна връзка - полярна, неполярна. Характеристики, механизми на образуване и видове ковалентни връзки. Йонна връзка. Степен на окисление. Метална връзка. Водородна връзка.
  • Химична реакция. Понятия и характеристики, Закон за запазване на масата, Видове (съединения, разлагане, заместване, обмен). Класификация: Обратими и необратими, Екзотермични и ендотермични, Редокс, Хомогенни и хетерогенни
  • Вие сте тук сега:Най-важните класове неорганични вещества. Оксиди. Хидроксиди. Сол. Киселини, основи, амфотерни вещества. Най-важните киселини и техните соли. Генетична връзка на най-важните класове неорганични вещества.
  • Химия на неметалите. Халогени. Сяра. Азот. въглерод. Благородни газове
  • Химия на металите. Алкални метали. Елементи от група IIA. Алуминий. Желязо
  • Модели на протичане на химични реакции. Скоростта на химична реакция. Закон за масовото действие. Правилото на Вант Хоф. Обратими и необратими химични реакции. Химически баланс. Принцип на Льо Шателие. Катализа
  • Решения. Електролитна дисоциация. Понятия, разтворимост, електролитна дисоциация, теория на електролитната дисоциация, степен на дисоциация, дисоциация на киселини, основи и соли, неутрална, алкална и кисела среда
  • Реакции в електролитни разтвори + Редокс реакции. (Йонообменни реакции. Образуване на слабо разтворимо, газообразно, слабо дисоцииращо вещество. Хидролиза на водни солеви разтвори. Окислител. Редуциращ агент.)
  • Класификация на органичните съединения. Въглеводороди. Въглеводородни производни. Изомерия и хомология на органичните съединения
  • Най-важните въглеводородни производни: алкохоли, феноли, карбонилни съединения, карбоксилни киселини, амини, аминокиселини


  • Подобни статии