Jak znaleźć największą wspólną wielokrotność dwóch liczb. Nod i nok liczb - największy wspólny dzielnik i najmniejsza wspólna wielokrotność kilku liczb

Najmniejsza wspólna wielokrotność dwóch liczb jest bezpośrednio powiązana z największym wspólnym dzielnikiem tych liczb. Ten połączenie pomiędzy GCD i NOC jest określona przez następujące twierdzenie.

Twierdzenie.

Najmniejsza wspólna wielokrotność dwóch dodatnich liczb całkowitych aib jest równa iloczynowi aib podzielonemu przez największy wspólny dzielnik aib, czyli LCM(a, b)=a b:GCD(a, b).

Dowód.

Pozwalać M jest pewną wielokrotnością liczb a i b. Oznacza to, że M jest podzielne przez a i zgodnie z definicją podzielności istnieje liczba całkowita k taka, że ​​prawdziwa jest równość M=a·k. Ale M jest także podzielne przez b, zatem a·k jest podzielne przez b.

Oznaczmy gcd(a, b) jako d. Wtedy możemy zapisać równości a=a 1 ·d i b=b 1 ·d, a a 1 =a:d i b 1 =b:d będą liczbami względnie pierwszymi. W rezultacie warunek uzyskany w poprzednim akapicie, że a · k jest podzielne przez b, można przeformułować w następujący sposób: a 1 · d · k dzieli się przez b 1 · d , co ze względu na właściwości podzielności jest równoważne warunkowi że a 1 · k jest podzielne przez b 1 .

Należy także zapisać dwa ważne wnioski z rozważanego twierdzenia.

    Wspólne wielokrotności dwóch liczb są takie same, jak wielokrotności ich najmniejszej wspólnej wielokrotności.

    Rzeczywiście tak jest, ponieważ każda wspólna wielokrotność M liczb aib jest określona przez równość M=LMK(a, b)·t dla pewnej wartości całkowitej t.

    Najmniejsza wspólna wielokrotność wzajemnie pierwszych liczb dodatnich aib jest równa ich iloczynowi.

    Uzasadnienie tego faktu jest dość oczywiste. Ponieważ a i b są względnie pierwsze, to zatem gcd(a, b)=1 NWD(a, b)=a b: NWD(a, b)=a b:1=a b.

Najmniejsza wspólna wielokrotność trzech lub więcej liczb

Znalezienie najmniejszej wspólnej wielokrotności trzech lub więcej liczb można sprowadzić do sekwencyjnego znajdowania LCM dwóch liczb. Jak to się robi, pokazuje następujące twierdzenie: a 1 , a 2 , …, a k pokrywają się ze wspólnymi wielokrotnościami liczb m k-1 i a k ​​zatem pokrywają się ze wspólnymi wielokrotnościami liczby m k . A ponieważ najmniejszą dodatnią wielokrotnością liczby m k jest sama liczba m k, to najmniejszą wspólną wielokrotnością liczb a 1, a 2, ..., a k jest m k.

Bibliografia.

  • Vilenkin N.Ya. i inne Matematyka. Klasa 6: podręcznik dla placówek kształcenia ogólnego.
  • Winogradow I.M. Podstawy teorii liczb.
  • Mikhelovich Sh.H. Teoria liczb.
  • Kulikov L.Ya. i inne Zbiór zagadnień algebry i teorii liczb: Podręcznik dla studentów fizyki i matematyki. specjalności instytutów pedagogicznych.

Wyrażenia i problemy matematyczne wymagają dużej wiedzy dodatkowej. NOC jest jednym z głównych, szczególnie często używanym w Temat jest nauczany w szkole średniej i zrozumienie materiału nie jest szczególnie trudne; osoba zaznajomiona z potęgami i tabliczką mnożenia nie będzie miała trudności z rozpoznaniem niezbędnych liczb i odkryciem wynik.

Definicja

Wspólna wielokrotność to liczba, którą można całkowicie podzielić na dwie liczby jednocześnie (a i b). Najczęściej liczbę tę uzyskuje się poprzez pomnożenie pierwotnych liczb a i b. Liczba musi być podzielna przez obie liczby jednocześnie, bez odchyleń.

NOC to przyjęta do oznaczenia krótka nazwa, zebrana od pierwszych liter.

Sposoby uzyskania numeru

Metoda mnożenia liczb nie zawsze jest odpowiednia do znalezienia LCM, znacznie lepiej nadaje się do prostych liczb jednocyfrowych lub dwucyfrowych. Zwyczajowo dzieli się na czynniki; im większa liczba, tym więcej będzie czynników.

Przykład 1

W najprostszym przykładzie szkoły zwykle używają liczb pierwszych, jedno- lub dwucyfrowych. Na przykład musisz rozwiązać następujące zadanie, znaleźć najmniejszą wspólną wielokrotność liczb 7 i 3, rozwiązanie jest dość proste, wystarczy je pomnożyć. W rezultacie jest liczba 21, mniejszej liczby po prostu nie ma.

Przykład nr 2

Druga wersja zadania jest znacznie trudniejsza. Podano liczby 300 i 1260, znalezienie LOC jest obowiązkowe. Aby rozwiązać problem, zakłada się następujące działania:

Rozkład pierwszej i drugiej liczby na proste czynniki. 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7. Pierwszy etap został zakończony.

Drugi etap polega na pracy z już uzyskanymi danymi. Każda z otrzymanych liczb musi brać udział w obliczeniu wyniku końcowego. Dla każdego czynnika z liczb pierwotnych pobierana jest największa liczba wystąpień. LCM jest liczbą ogólną, więc czynniki liczb muszą się w niej powtórzyć, w każdej z nich, nawet tych, które występują w jednym egzemplarzu. Obie liczby początkowe zawierają liczby 2, 3 i 5 w różnych potęgach; 7 występuje tylko w jednym przypadku.

Aby obliczyć wynik końcowy, należy przyjąć każdą liczbę w największej z potęg przedstawionych w równaniu. Pozostaje tylko pomnożyć i uzyskać odpowiedź; jeśli zostanie poprawnie wypełnione, zadanie składa się z dwóch etapów bez wyjaśnienia:

1) 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7.

2) NOC = 6300.

Na tym polega cały problem, jeśli spróbujesz obliczyć wymaganą liczbę przez pomnożenie, odpowiedź na pewno nie będzie poprawna, ponieważ 300 * 1260 = 378 000.

Badanie:

6300 / 300 = 21 - poprawnie;

6300 / 1260 = 5 - poprawnie.

Poprawność uzyskanego wyniku sprawdza się poprzez podzielenie LCM przez obydwie liczby początkowe, jeżeli w obu przypadkach liczba ta jest liczbą całkowitą, to odpowiedź jest prawidłowa.

Co oznacza NOC w matematyce?

Jak wiadomo, w matematyce nie ma ani jednej bezużytecznej funkcji, ta nie jest wyjątkiem. Najczęstszym celem tej liczby jest sprowadzenie ułamków do wspólnego mianownika. Czego najczęściej uczy się w klasach 5-6 szkoły średniej. Jest to dodatkowo wspólny dzielnik wszystkich wielokrotności, jeśli w zadaniu występują takie warunki. Takie wyrażenie może znaleźć wielokrotność nie tylko dwóch liczb, ale także znacznie większej liczby - trzech, pięciu i tak dalej. Im więcej liczb, tym więcej działań w zadaniu, ale złożoność nie wzrasta.

Na przykład, biorąc pod uwagę liczby 250, 600 i 1500, musisz znaleźć ich wspólny LCM:

1) 250 = 25 * 10 = 5 2 *5 * 2 = 5 3 * 2 - ten przykład szczegółowo opisuje faktoryzację, bez redukcji.

2) 600 = 60 * 10 = 3 * 2 3 *5 2 ;

3) 1500 = 15 * 100 = 33 * 5 3 *2 2 ;

Aby skomponować wyrażenie, należy wymienić wszystkie czynniki, w tym przypadku podano 2, 5, 3 - dla wszystkich tych liczb konieczne jest określenie maksymalnego stopnia.

Uwaga: wszystkie czynniki należy doprowadzić do całkowitego uproszczenia, jeśli to możliwe, rozłożonego na poziom pojedynczych cyfr.

Badanie:

1) 3000 / 250 = 12 - poprawnie;

2) 3000 / 600 = 5 - prawda;

3) 3000 / 1500 = 2 - poprawnie.

Ta metoda nie wymaga żadnych sztuczek ani genialnych umiejętności, wszystko jest proste i jasne.

Inny sposób

W matematyce wiele rzeczy jest ze sobą powiązanych, wiele rzeczy można rozwiązać na dwa lub więcej sposobów, to samo dotyczy znajdowania najmniejszej wspólnej wielokrotności, LCM. Poniższą metodę można zastosować w przypadku prostych liczb dwucyfrowych i jednocyfrowych. Tworzona jest tabela, w której mnożną wprowadza się pionowo, mnożnik poziomo, a iloczyn jest wskazany w przecinających się komórkach kolumny. Możesz odzwierciedlić tabelę za pomocą linii, wziąć liczbę i zapisać wyniki pomnożenia tej liczby przez liczby całkowite, od 1 do nieskończoności, czasami wystarczy 3-5 punktów, druga i kolejne liczby przechodzą ten sam proces obliczeniowy. Wszystko dzieje się, dopóki nie zostanie znaleziona wspólna wielokrotność.

Biorąc pod uwagę liczby 30, 35, 42, musisz znaleźć LCM łączący wszystkie liczby:

1) Wielokrotności 30: 60, 90, 120, 150, 180, 210, 250 itd.

2) Wielokrotności 35: 70, 105, 140, 175, 210, 245 itd.

3) Wielokrotności 42: 84, 126, 168, 210, 252 itd.

Można zauważyć, że wszystkie liczby są dość różne, jedyną wspólną liczbą jest 210, więc będzie to NOC. Wśród procesów biorących udział w tym obliczeniu istnieje również największy wspólny dzielnik, który jest obliczany według podobnych zasad i często spotykany w sąsiednich problemach. Różnica jest niewielka, ale dość znacząca, LCM polega na obliczeniu liczby podzielonej przez wszystkie podane wartości początkowe, a GCD polega na obliczeniu największej wartości, przez którą podzielone są liczby pierwotne.

Definicja. Nazywa się największą liczbę naturalną, przez którą liczby a i b są dzielone bez reszty największy wspólny dzielnik (NWD) te liczby.

Znajdźmy największy wspólny dzielnik liczb 24 i 35.
Dzielnikami liczby 24 są liczby 1, 2, 3, 4, 6, 8, 12, 24, a dzielnikami liczby 35 są liczby 1, 5, 7, 35.
Widzimy, że liczby 24 i 35 mają tylko jeden wspólny dzielnik - liczbę 1. Takie liczby nazywane są wzajemnie pierwsze.

Definicja. Nazywa się liczby naturalne wzajemnie pierwsze, jeśli ich największy wspólny dzielnik (NWD) wynosi 1.

Największy wspólny dzielnik (GCD) można znaleźć bez wypisywania wszystkich dzielników danych liczb.

Rozkładając liczby 48 i 36, otrzymujemy:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Z czynników wchodzących w skład rozwinięcia pierwszej z tych liczb skreślamy te, które nie są uwzględnione w rozwinięciu drugiej liczby (tj. dwie dwójki).
Pozostałe czynniki to 2 * 2 * 3. Ich iloczyn jest równy 12. Liczba ta jest największym wspólnym dzielnikiem liczb 48 i 36. Znaleziono również największy wspólny dzielnik trzech lub więcej liczb.

Znaleźć Największy wspólny dzielnik

2) spośród czynników wchodzących w skład rozwinięcia jednej z tych liczb skreślić te, które nie wchodzą w skład rozwinięcia innych liczb;
3) znajdź iloczyn pozostałych czynników.

Jeśli wszystkie podane liczby są podzielne przez jedną z nich, to ta liczba jest podzielna Największy wspólny dzielnik podane liczby.
Na przykład największym wspólnym dzielnikiem liczb 15, 45, 75 i 180 jest liczba 15, ponieważ wszystkie inne liczby są przez nią podzielne: 45, 75 i 180.

Najmniejsza wspólna wielokrotność (LCM)

Definicja. Najmniejsza wspólna wielokrotność (LCM) liczby naturalne a i b to najmniejsza liczba naturalna będąca wielokrotnością obu a i b. Najmniejszą wspólną wielokrotność (LCM) liczb 75 i 60 można znaleźć bez zapisywania wielokrotności tych liczb z rzędu. Aby to zrobić, rozłóżmy 75 i 60 na czynniki pierwsze: 75 = 3 * 5 * 5 i 60 = 2 * 2 * 3 * 5.
Zapiszmy czynniki wchodzące w skład rozwinięcia pierwszej z tych liczb i dodajmy do nich brakujące czynniki 2 i 2 z rozwinięcia drugiej liczby (czyli łączymy czynniki).
Otrzymujemy pięć czynników 2 * 2 * 3 * 5 * 5, których iloczyn wynosi 300. Ta liczba jest najmniejszą wspólną wielokrotnością liczb 75 i 60.

Znajdują także najmniejszą wspólną wielokrotność trzech lub więcej liczb.

Do znajdź najmniejszą wspólną wielokrotność kilka liczb naturalnych, potrzebujesz:
1) rozłożyć je na czynniki pierwsze;
2) zapisz czynniki składające się na rozwinięcie jednej z liczb;
3) dodać do nich brakujące czynniki z rozwinięć pozostałych liczb;
4) znaleźć iloczyn uzyskanych czynników.

Zauważ, że jeśli jedna z tych liczb jest podzielna przez wszystkie inne liczby, to liczba ta jest najmniejszą wspólną wielokrotnością tych liczb.
Na przykład najmniejsza wspólna wielokrotność liczb 12, 15, 20 i 60 wynosi 60, ponieważ jest podzielna przez wszystkie te liczby.

Pitagoras (VI wiek p.n.e.) i jego uczniowie badali kwestię podzielności liczb. Liczbę równą sumie wszystkich jej dzielników (bez samej liczby) nazywali liczbą doskonałą. Na przykład liczby 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) są idealne. Kolejne liczby doskonałe to 496, 8128, 33 550 336. Pitagorejczycy znali tylko trzy pierwsze liczby doskonałe. Czwarty - 8128 - stał się znany w I wieku. N. mi. Piąty – 33 550 336 – odnaleziono w XV wieku. W 1983 roku znanych było już 27 liczb doskonałych. Ale naukowcy nadal nie wiedzą, czy istnieją liczby doskonałe nieparzyste, czy też istnieje największa liczba doskonała.
Zainteresowanie starożytnych matematyków liczbami pierwszymi wynika z faktu, że każda liczba jest albo pierwsza, albo można ją przedstawić jako iloczyn liczb pierwszych, tj. liczby pierwsze są jak cegły, z których zbudowane są pozostałe liczby naturalne.
Zapewne zauważyłeś, że liczby pierwsze w szeregu liczb naturalnych występują nierównomiernie – w niektórych częściach szeregu jest ich więcej, w innych – mniej. Ale im dalej posuniemy się w szeregu liczbowym, tym mniej popularne są liczby pierwsze. Powstaje pytanie: czy istnieje ostatnia (największa) liczba pierwsza? Starożytny grecki matematyk Euklides (III w. p.n.e.) w swojej książce „Elementy”, która przez dwa tysiące lat była głównym podręcznikiem matematyki, udowodnił, że liczb pierwszych jest nieskończenie wiele, czyli za każdą liczbą pierwszą kryje się jeszcze większa liczba pierwsza numer.
Aby znaleźć liczby pierwsze, inny grecki matematyk z tego samego okresu, Eratostenes, wymyślił tę metodę. Zapisał wszystkie liczby od 1 do jakiejś liczby, po czym skreślił jedynkę, która nie jest ani liczbą pierwszą, ani złożoną, po czym przekreślił przez jedynkę wszystkie liczby występujące po 2 (liczby będące wielokrotnością 2, czyli 4, 6, 8 itd.). Pierwszą pozostałą liczbą po 2 było 3. Następnie po dwójce wszystkie liczby występujące po 3 (liczby będące wielokrotnościami 3, tj. 6, 9, 12 itd.) zostały przekreślone. w końcu tylko liczby pierwsze pozostały nieskrzyżowane.

Jak znaleźć LCM (najmniejszą wspólną wielokrotność)

Wspólna wielokrotność dwóch liczb całkowitych to liczba całkowita, która daje się równomiernie podzielić przez obie podane liczby bez pozostawiania reszty.

Najmniejsza wspólna wielokrotność dwóch liczb całkowitych to najmniejsza ze wszystkich liczb całkowitych, która dzieli się przez obie podane liczby bez pozostawiania reszty.

Metoda 1. LCM można z kolei znaleźć dla każdej z podanych liczb, wypisując w kolejności rosnącej wszystkie liczby, które otrzymamy poprzez pomnożenie ich przez 1, 2, 3, 4 i tak dalej.

Przykład dla numerów 6 i 9.
Mnożymy liczbę 6 kolejno przez 1, 2, 3, 4, 5.
Otrzymujemy: 6, 12, 18 , 24, 30
Mnożymy liczbę 9 kolejno przez 1, 2, 3, 4, 5.
Otrzymujemy: 9, 18 , 27, 36, 45
Jak widać, LCM dla liczb 6 i 9 będzie wynosić 18.

Ta metoda jest wygodna, gdy obie liczby są małe i łatwo je pomnożyć przez ciąg liczb całkowitych. Są jednak przypadki, gdy trzeba znaleźć LCM dla liczb dwucyfrowych lub trzycyfrowych, a także gdy istnieją trzy lub nawet więcej liczb początkowych.

Metoda 2. LCM można znaleźć, rozkładając oryginalne liczby na czynniki pierwsze.
Po rozkładzie należy skreślić identyczne liczby z powstałego szeregu czynników pierwszych. Pozostałe liczby pierwszej liczby będą mnożnikiem drugiej, a pozostałe liczby drugiej będą mnożnikiem pierwszej.

Przykład dla numerów 75 i 60.
Najmniejszą wspólną wielokrotność liczb 75 i 60 można znaleźć bez zapisywania wielokrotności tych liczb z rzędu. Aby to zrobić, rozłóżmy 75 i 60 na proste czynniki:
75 = 3 * 5 * 5, A
60 = 2 * 2 * 3 * 5 .
Jak widać, współczynniki 3 i 5 pojawiają się w obu wierszach. Mentalnie je „przekreślamy”.
Wypiszmy pozostałe czynniki biorące udział w rozwinięciu każdej z tych liczb. Rozkładając liczbę 75 zostaje nam liczba 5, a rozkładając liczbę 60 zostaje nam 2*2
Oznacza to, że aby wyznaczyć LCM dla liczb 75 i 60, należy pomnożyć liczby pozostałe z rozwinięcia 75 (to jest 5) przez 60, a liczby pozostałe z rozwinięcia 60 (to jest 2 * 2) przez 75. Oznacza to, że dla ułatwienia zrozumienia mówimy, że mnożymy „na krzyż”.
75 * 2 * 2 = 300
60 * 5 = 300
W ten sposób znaleźliśmy LCM dla liczb 60 i 75. To jest liczba 300.

Przykład. Określ LCM dla liczb 12, 16, 24
W tym przypadku nasze działania będą nieco bardziej skomplikowane. Ale najpierw, jak zawsze, rozłóżmy wszystkie liczby na czynniki
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3
Aby poprawnie wyznaczyć LCM, wybieramy najmniejszą ze wszystkich liczb (jest to liczba 12) i kolejno przechodzimy przez jej współczynniki, skreślając je, jeśli w przynajmniej jednym z pozostałych rzędów liczb napotkamy ten sam współczynnik, którego jeszcze nie ma został przekreślony.

Krok 1 . Widzimy, że 2 * 2 występuje we wszystkich seriach liczb. Przekreślmy je.
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3

Krok 2. W czynnikach pierwszych liczby 12 pozostaje tylko liczba 3. Jest ona jednak obecna w czynnikach pierwszych liczby 24. Przekreślamy liczbę 3 z obu wierszy, natomiast dla liczby 16 nie oczekuje się żadnych działań .
12 = 2 * 2 * 3
16 = 2 * 2 * 2 * 2
24 = 2 * 2 * 2 * 3

Jak widać, rozkładając liczbę 12, „przekreśliliśmy” wszystkie liczby. Oznacza to, że wyszukiwanie LOC zostało zakończone. Pozostaje tylko obliczyć jego wartość.
Dla liczby 12 weź pozostałe czynniki liczby 16 (następne w kolejności rosnącej)
12 * 2 * 2 = 48
To jest NOC

Jak widać, w tym przypadku znalezienie LCM było nieco trudniejsze, ale gdy trzeba go znaleźć dla trzech lub więcej liczb, ta metoda pozwala zrobić to szybciej. Jednak obie metody znalezienia LCM są prawidłowe.

Przyjrzyjmy się trzem sposobom znalezienia najmniejszej wspólnej wielokrotności.

Znajdowanie przez faktoryzację

Pierwsza metoda polega na znalezieniu najmniejszej wspólnej wielokrotności poprzez rozłożenie podanych liczb na czynniki pierwsze.

Powiedzmy, że musimy znaleźć LCM liczb: 99, 30 i 28. Aby to zrobić, rozłóżmy każdą z tych liczb na czynniki pierwsze:

Aby żądana liczba była podzielna przez 99, 30 i 28, konieczne i wystarczające jest, aby zawierała wszystkie czynniki pierwsze tych dzielników. Aby to zrobić, musimy podnieść wszystkie czynniki pierwsze tych liczb do największej możliwej potęgi i pomnożyć je przez siebie:

2 2 3 2 5 7 11 = 13860

Zatem LCM (99, 30, 28) = 13 860. Żadna inna liczba mniejsza niż 13 860 nie jest podzielna przez 99, 30 lub 28.

Aby znaleźć najmniejszą wspólną wielokrotność danych liczb, należy je rozłożyć na czynniki pierwsze, następnie wziąć każdy czynnik pierwszy z największym wykładnikiem, w jakim się pojawia, i pomnożyć te czynniki przez siebie.

Ponieważ liczby względnie pierwsze nie mają wspólnych czynników pierwszych, ich najmniejsza wspólna wielokrotność jest równa iloczynowi tych liczb. Na przykład trzy liczby: 20, 49 i 33 są względnie pierwsze. Dlatego

LCM (20, 49, 33) = 20 49 33 = 32 340.

To samo należy zrobić, szukając najmniejszej wspólnej wielokrotności różnych liczb pierwszych. Na przykład LCM (3, 7, 11) = 3 7 11 = 231.

Znalezienie poprzez selekcję

Druga metoda polega na znalezieniu najmniejszej wspólnej wielokrotności poprzez selekcję.

Przykład 1. Kiedy największa z podanych liczb jest dzielona przez inną podaną liczbę, wówczas LCM tych liczb jest równy największej z nich. Przykładowo biorąc pod uwagę cztery liczby: 60, 30, 10 i 6. Każda z nich jest podzielna przez 60, zatem:

LCM(60, 30, 10, 6) = 60

W innych przypadkach, aby znaleźć najmniejszą wspólną wielokrotność, stosuje się następującą procedurę:

  1. Spośród podanych liczb znajdź największą liczbę.
  2. Następnie znajdujemy liczby będące wielokrotnościami największej liczby, mnożąc ją przez liczby naturalne w kolejności rosnącej i sprawdzając, czy otrzymany iloczyn jest podzielny przez pozostałe podane liczby.

Przykład 2. Mając trzy liczby 24, 3 i 18. Wyznaczamy największą z nich - jest to liczba 24. Następnie znajdujemy liczby będące wielokrotnościami 24, sprawdzając, czy każda z nich jest podzielna przez 18 i 3:

24 · 1 = 24 - dzieli się przez 3, ale nie dzieli się przez 18.

24 · 2 = 48 - dzieli się przez 3, ale nie jest podzielna przez 18.

24 · 3 = 72 - podzielne przez 3 i 18.

Zatem LCM (24, 3, 18) = 72.

Wyszukiwanie poprzez sekwencyjne wyszukiwanie LCM

Trzecia metoda polega na znalezieniu najmniejszej wspólnej wielokrotności poprzez kolejne znalezienie LCM.

LCM dwóch danych liczb jest równy iloczynowi tych liczb podzielonemu przez ich największy wspólny dzielnik.

Przykład 1. Znajdź LCM dwóch danych liczb: 12 i 8. Określ ich największy wspólny dzielnik: GCD (12, 8) = 4. Pomnóż te liczby:

Produkt dzielimy według ich gcd:

Zatem LCM (12, 8) = 24.

Aby znaleźć LCM trzech lub więcej liczb, wykonaj następującą procedurę:

  1. Najpierw znajdź LCM dowolnych dwóch z tych liczb.
  2. Następnie LCM znalezionej najmniejszej wspólnej wielokrotności i trzeciej podanej liczby.
  3. Następnie LCM wynikowej najmniejszej wspólnej wielokrotności i czwartej liczby itd.
  4. Zatem poszukiwanie LCM trwa tak długo, jak istnieją liczby.

Przykład 2. Znajdźmy LCM trzech podanych liczb: 12, 8 i 9. LCM liczb 12 i 8 znaleźliśmy już w poprzednim przykładzie (jest to liczba 24). Pozostaje znaleźć najmniejszą wspólną wielokrotność liczby 24 i trzeciej podanej liczby - 9. Wyznacz ich największy wspólny dzielnik: NWD (24, 9) = 3. Pomnóż LCM przez liczbę 9:

Produkt dzielimy według ich gcd:

Zatem LCM (12, 8, 9) = 72.



Podobne artykuły