Po definiciji, osnova pravilne četvorougaone piramide je. Osnove geometrije: pravilna piramida je

Koncept piramide

Definicija 1

Geometrijska figura koju čine poligon i tačka koja ne leži u ravni koja sadrži ovaj poligon, povezana sa svim vrhovima poligona, naziva se piramida (slika 1).

Poligon od kojeg je napravljena piramida naziva se osnova piramide; rezultirajući trokuti, kada su spojeni u tačku, su bočne strane piramide, stranice trokuta su stranice piramide, a tačka zajednička svim trouglovima je vrh piramide.

Vrste piramida

U zavisnosti od broja uglova u osnovi piramide, može se nazvati trouglastim, četvorougaonim i tako dalje (slika 2).

Slika 2.

Druga vrsta piramide je redovna piramida.

Hajde da uvedemo i dokažemo svojstvo pravilne piramide.

Teorema 1

Sve bočne strane pravilne piramide su jednakokraki trouglovi koji su međusobno jednaki.

Dokaz.

Razmotrimo pravilnu $n-$gonalnu piramidu sa vrhom $S$ visine $h=SO$. Nacrtajmo krug oko baze (slika 4).

Slika 4.

Razmotrimo trougao $SOA$. Prema Pitagorinoj teoremi, dobijamo

Očigledno, svaka bočna ivica će biti definirana na ovaj način. Prema tome, sve bočne ivice su međusobno jednake, odnosno sve bočne strane su jednakokraki trouglovi. Dokažimo da su oni međusobno jednaki. Pošto je osnova pravilan mnogougao, osnove svih bočnih strana su jedna drugoj. Prema tome, sve bočne strane su jednake prema III kriterijumu jednakosti trouglova.

Teorema je dokazana.

Hajde da sada uvedemo sljedeću definiciju koja se odnosi na koncept pravilne piramide.

Definicija 3

Apotem pravilne piramide je visina njene bočne strane.

Očigledno, prema teoremi jedan, sve apoteme su jedna drugoj jednake.

Teorema 2

Bočna površina pravilne piramide određena je kao proizvod poluperimetra osnove i apoteme.

Dokaz.

Označimo stranu osnove $n-$gonalne piramide sa $a$, a apotemu sa $d$. Dakle, površina bočne strane je jednaka

Pošto su, prema teoremi 1, sve strane jednake, onda

Teorema je dokazana.

Druga vrsta piramide je skraćena piramida.

Definicija 4

Ako se kroz običnu piramidu povuče ravan paralelna njenoj osnovici, onda se lik formiran između ove ravni i ravni baze naziva skraćenom piramidom (slika 5).

Slika 5. Krnja piramida

Bočne strane krnje piramide su trapezi.

Teorema 3

Bočna površina pravilne skraćene piramide određena je kao proizvod zbira poluperimetara baza i apoteme.

Dokaz.

Označimo stranice osnova $n-$gonalne piramide sa $a\ i\ b$, respektivno, a apotemu sa $d$. Dakle, površina bočne strane je jednaka

Pošto su sve strane jednake, onda

Teorema je dokazana.

Primer zadatka

Primjer 1

Nađite površinu bočne površine skraćene trokutaste piramide ako se ona dobije iz pravilne piramide sa osnovnom stranom 4 i apotemom 5 odsijecanjem ravnine koja prolazi kroz srednju liniju bočnih strana.

Rješenje.

Koristeći teoremu srednje linije, nalazimo da je gornja osnova skraćene piramide jednaka $4\cdot \frac(1)(2)=2$, a apotema jednaka $5\cdot \frac(1)(2) =2,5$.

Tada, prema teoremi 3, dobijamo

Piramida. Krnja piramida

Piramida je poliedar, čije je jedno lice mnogougao ( baza ), a sva ostala lica su trokuti sa zajedničkim vrhom ( bočne strane ) (Sl. 15). Piramida se zove ispravan , ako je njegova osnova pravilan mnogougao i vrh piramide je projektovan u centar osnove (Sl. 16). Zove se trouglasta piramida čiji su svi rubovi jednaki tetraedar .



Lateralno rebro piramide je strana bočne strane koja ne pripada osnovici Visina piramida je udaljenost od njenog vrha do ravni baze. Sve bočne ivice pravilne piramide su jednake jedna drugoj, sve bočne strane su jednaki jednakokraki trouglovi. Visina bočne strane pravilne piramide povučena iz vrha naziva se apothem . Dijagonalni presjek naziva se presjek piramide ravninom koja prolazi kroz dvije bočne ivice koje ne pripadaju istoj površini.

Bočna površina piramida je zbir površina svih bočnih strana. Ukupna površina naziva se zbir površina svih bočnih strana i baze.

Teoreme

1. Ako su u piramidi sve bočne ivice jednako nagnute prema ravni osnove, tada se vrh piramide projektuje u centar kružnice opisane u blizini baze.

2. Ako su sve bočne ivice piramide jednake dužine, tada se vrh piramide projektuje u centar kružnice opisane blizu osnove.

3. Ako su sva lica u piramidi podjednako nagnuta prema ravni osnove, tada se vrh piramide projektuje u centar kruga upisanog u bazu.

Za izračunavanje zapremine proizvoljne piramide, ispravna formula je:

Gdje V- zapremina;

S baza– bazna površina;

H– visina piramide.

Za pravilnu piramidu ispravne su sljedeće formule:

Gdje str– perimetar baze;

h a– apotema;

H- visina;

S puna

S strana

S baza– bazna površina;

V– zapremina pravilne piramide.

Krnja piramida naziva se dio piramide zatvoren između osnove i rezne ravni paralelne sa osnovom piramide (slika 17). Pravilna skraćena piramida naziva se dio pravilne piramide zatvoren između osnove i rezne ravni paralelne s osnovom piramide.

Razlozi skraćena piramida - slični poligoni. Bočne strane – trapezi. Visina krnje piramide je rastojanje između njenih osnova. Dijagonala skraćena piramida je segment koji povezuje njene vrhove koji ne leže na istoj površini. Dijagonalni presjek je presjek skraćene piramide ravninom koja prolazi kroz dvije bočne ivice koje ne pripadaju istoj površini.


Za skraćenu piramidu važe sljedeće formule:

(4)

Gdje S 1 , S 2 – površine gornje i donje osnove;

S puna– ukupna površina;

S strana– bočna površina;

H- visina;

V– zapremina krnje piramide.

Za pravilnu skraćenu piramidu formula je tačna:

Gdje str 1 , str 2 – perimetri osnova;

h a– apotema pravilne krnje piramide.

Primjer 1. U pravilnoj trouglastoj piramidi, ugao diedara u osnovi je 60º. Pronađite tangentu ugla nagiba bočne ivice prema ravni baze.

Rješenje. Napravimo crtež (slika 18).


Piramida je pravilna, što znači da se u osnovi nalazi jednakostranični trougao, a sve bočne strane su jednaki jednakokraki trouglovi. Diedarski ugao u osnovi je ugao nagiba bočne strane piramide prema ravni osnove. Linearni ugao je ugao a između dvije okomice: itd. Vrh piramide projektovan je u centar trougla (središte opisane i upisane kružnice trokuta ABC). Ugao nagiba bočne ivice (npr S.B.) je ugao između samog ruba i njegove projekcije na ravan baze. Za rebro S.B. ovaj ugao će biti ugao SBD. Da biste pronašli tangentu, morate znati noge SO I O.B.. Neka je dužina segmenta BD jednako 3 A. Dot O linijski segment BD je podijeljen na dijelove: i Od nalazimo SO: Od nalazimo:

odgovor:

Primjer 2. Nađite zapreminu pravilne skraćene četvorougaone piramide ako su dijagonale njenih osnova jednake cm i cm, a visina 4 cm.

Rješenje. Da bismo pronašli zapreminu krnje piramide, koristimo formulu (4). Da biste pronašli površinu baza, morate pronaći stranice osnovnih kvadrata, znajući njihove dijagonale. Stranice osnovica su jednake 2 cm odnosno 8 cm.To znači površine osnova i Zamjenom svih podataka u formulu izračunavamo zapreminu krnje piramide:

odgovor: 112 cm 3.

Primjer 3. Nađite površinu bočne strane pravilne trokutaste skraćene piramide čije su stranice osnova 10 cm i 4 cm, a visina piramide 2 cm.

Rješenje. Napravimo crtež (slika 19).


Bočna strana ove piramide je jednakokraki trapez. Da biste izračunali površinu trapeza, morate znati osnovu i visinu. Osnove su date prema uslovu, samo visina ostaje nepoznata. Naći ćemo je odakle A 1 E okomito iz tačke A 1 na ravni donje baze, A 1 D– okomito od A 1 per AC. A 1 E= 2 cm, jer je ovo visina piramide. Naći DE Napravimo dodatni crtež koji prikazuje pogled odozgo (slika 20). Dot O– projekcija centara gornje i donje baze. budući da (vidi sliku 20) i S druge strane uredu– radijus upisan u krug i OM– radijus upisan u krug:

MK = DE.

Prema Pitagorinoj teoremi iz

Bočna površina lica:


odgovor:

Primjer 4. U osnovi piramide leži jednakokraki trapez, čije su osnove A I b (a> b). Svaka bočna strana formira ugao jednak ravni osnove piramide j. Pronađite ukupnu površinu piramide.

Rješenje. Napravimo crtež (slika 21). Ukupna površina piramide SABCD jednak zbroju površina i površine trapeza A B C D.

Upotrijebimo tvrdnju da ako su sva lica piramide jednako nagnuta prema ravni osnove, tada se vrh projektuje u središte kruga upisanog u bazu. Dot O– projekcija temena S u osnovi piramide. Trougao SOD je ortogonalna projekcija trougla CSD do ravni baze. Koristeći teoremu o površini ortogonalne projekcije ravne figure, dobijamo:


Isto tako znači Dakle, problem se sveo na pronalaženje površine trapeza A B C D. Nacrtajmo trapez A B C D odvojeno (sl. 22). Dot O– središte kruga upisanog u trapez.


Kako se kružnica može upisati u trapez, onda ili Iz Pitagorine teoreme imamo

Ovaj video vodič će pomoći korisnicima da steknu ideju o temi Piramida. Ispravna piramida. U ovoj lekciji ćemo se upoznati sa pojmom piramide i dati mu definiciju. Hajde da razmotrimo šta je pravilna piramida i koja svojstva ima. Zatim dokazujemo teoremu o bočnoj površini pravilne piramide.

U ovoj lekciji ćemo se upoznati sa pojmom piramide i dati mu definiciju.

Razmislite o poligonu A 1 A 2...A n, koja leži u α ravni, i tačku P, koji ne leži u α ravni (slika 1). Hajde da povežemo tačke P sa vrhovima A 1, A 2, A 3, … A n. Dobijamo n trokuti: A 1 A 2 R, A 2 A 3 R i tako dalje.

Definicija. Poliedar RA 1 A 2 ...A n, sastavljen od n-kvadrat A 1 A 2...A n I n trouglovi RA 1 A 2, RA 2 A 3RA n A n-1 se zove n-piramida uglja. Rice. 1.

Rice. 1

Zamislite četverokutnu piramidu PABCD(Sl. 2).

R- vrh piramide.

A B C D- osnova piramide.

RA- bočno rebro.

AB- osnovno rebro.

Od tačke R hajde da ispustimo okomicu RN na osnovnu ravan A B C D. Povučena okomica je visina piramide.

Rice. 2

Puna površina piramide sastoji se od bočne površine, odnosno površine svih bočnih površina i površine osnove:

S puni = S strana + S glavni

Piramida se naziva ispravnom ako:

  • njegova osnova je pravilan poligon;
  • segment koji povezuje vrh piramide sa središtem baze je njena visina.

Objašnjenje na primjeru pravilne četverokutne piramide

Zamislite pravilnu četvorougaonu piramidu PABCD(Sl. 3).

R- vrh piramide. Osnova piramide A B C D- pravilan četvorougao, odnosno kvadrat. Dot O, tačka presjeka dijagonala, je centar kvadrata. znači, RO je visina piramide.

Rice. 3

Objašnjenje: u ispravnom n U trokutu, centar upisane kružnice i centar opisane kružnice poklapaju se. Ovaj centar se naziva središte poligona. Ponekad kažu da je vrh projektovan u centar.

Visina bočne strane pravilne piramide povučena iz njenog vrha naziva se apothem i određen je h a.

1. sve bočne ivice pravilne piramide su jednake;

2. Bočne strane su jednaki jednakokraki trouglovi.

Dokaz ovih svojstava ćemo dati na primjeru pravilne četverokutne piramide.

Dato: PABCD- pravilne četvorougaone piramide,

A B C D- kvadrat,

RO- visina piramide.

Dokazati:

1. RA = PB = RS = PD

2.∆ABP = ∆BCP =∆CDP =∆DAP Vidi sl. 4.

Rice. 4

Dokaz.

RO- visina piramide. To jest, pravo RO okomito na ravan ABC, a samim tim i direktni JSC, VO, SO I DO ležeći u njemu. Dakle, trouglovi ROA, ROV, ROS, ROD- pravougaona.

Zamislite kvadrat A B C D. Iz svojstava kvadrata slijedi da AO = VO = CO = DO.

Zatim pravokutni trouglovi ROA, ROV, ROS, ROD nogu RO- general i noge JSC, VO, SO I DO su jednaki, što znači da su ti trouglovi jednaki na dvije strane. Iz jednakosti trouglova slijedi jednakost segmenata, RA = PB = RS = PD. Tačka 1 je dokazana.

Segmenti AB I Ned su jednake jer su stranice istog kvadrata, RA = PB = RS. Dakle, trouglovi AVR I VSR - jednakokraki i jednaki sa tri strane.

Na sličan način nalazimo te trouglove ABP, VCP, CDP, DAP su jednakokraki i jednaki, kao što je potrebno dokazati u stavu 2.

Površina bočne površine pravilne piramide jednaka je polovini umnoška opsega baze i apoteme:

Da bismo to dokazali, izaberimo pravilnu trouglastu piramidu.

Dato: RAVS- pravilna trouglasta piramida.

AB = BC = AC.

RO- visina.

Dokazati: . Vidi sl. 5.

Rice. 5

Dokaz.

RAVS- pravilna trouglasta piramida. To je AB= AC = BC. Neka O- centar trougla ABC, Onda RO je visina piramide. U osnovi piramide leži jednakostranični trokut ABC. primeti, to .

Trouglovi RAV, RVS, RSA- jednaki jednakokraki trouglovi (po svojstvu). Trouglasta piramida ima tri bočne strane: RAV, RVS, RSA. To znači da je površina bočne površine piramide:

S strana = 3S RAW

Teorema je dokazana.

Polumjer kružnice upisane u podnožje pravilne četverokutne piramide je 3 m, visina piramide je 4 m. Nađite površinu bočne površine piramide.

Dato: pravilna četvorougaona piramida A B C D,

A B C D- kvadrat,

r= 3 m,

RO- visina piramide,

RO= 4 m.

Nađi: S strana. Vidi sl. 6.

Rice. 6

Rješenje.

Prema dokazanoj teoremi, .

Nađimo prvo stranu baze AB. Znamo da je poluprečnik kružnice upisane u podnožje pravilne četvorougaone piramide 3 m.

Zatim, m.

Pronađite obim kvadrata A B C D sa stranicom od 6 m:

Zamislite trougao BCD. Neka M- sredina strane DC. Jer O- srednji BD, To (m).

Trougao DPC- jednakokraki. M- srednji DC. To je, RM- medijana, a time i visina u trouglu DPC. Onda RM- apotema piramide.

RO- visina piramide. Onda pravo RO okomito na ravan ABC, a samim tim i direktni OM, ležeći u njemu. Nađimo apotemu RM iz pravouglog trougla ROM.

Sada možemo pronaći bočnu površinu piramide:

Odgovori Površina: 60 m2.

Poluprečnik kružnice opisane oko osnove pravilne trouglaste piramide jednak je m. Bočna površina je 18 m 2. Pronađite dužinu apoteme.

Dato: ABCP- pravilne trouglaste piramide,

AB = BC = SA,

R= m,

S strana = 18 m2.

Nađi: . Vidi sl. 7.

Rice. 7

Rješenje.

U pravouglu ABC Dat je polumjer opisane kružnice. Hajde da nađemo stranu AB ovaj trougao koristeći zakon sinusa.

Poznavajući stranu pravilnog trougla (m), nalazimo njegov perimetar.

Prema teoremi o bočnoj površini pravilne piramide, gdje je h a- apotema piramide. onda:

Odgovori: 4 m.

Dakle, pogledali smo šta je piramida, šta je pravilna piramida i dokazali smo teoremu o bočnoj površini pravilne piramide. U sljedećoj lekciji ćemo se upoznati sa skraćenom piramidom.

Bibliografija

  1. Geometrija. 10-11 razred: udžbenik za učenike opšteobrazovnih ustanova (osnovni i specijalizovani nivoi) / I. M. Smirnova, V. A. Smirnov. - 5. izdanje, rev. i dodatne - M.: Mnemosyne, 2008. - 288 str.: ilustr.
  2. Geometrija. 10-11 razred: Udžbenik za opšteobrazovne ustanove / Sharygin I.F. - M.: Drfa, 1999. - 208 str.: ilustr.
  3. Geometrija. 10. razred: Udžbenik za opšteobrazovne ustanove sa dubljim i specijalizovanim proučavanjem matematike /E. V. Potoskuev, L. I. Zvalich. - 6. izd., stereotip. - M.: Drfa, 008. - 233 str.: ilustr.
  1. Internet portal "Yaklass" ()
  2. Internet portal “Festival pedagoških ideja “Prvi septembar” ()
  3. Internet portal “Slideshare.net” ()

Zadaća

  1. Može li pravilan mnogokut biti osnova nepravilne piramide?
  2. Dokazati da su disjunktne ivice pravilne piramide okomite.
  3. Nađite vrijednost ugla diedara na strani osnove pravilne četverougaone piramide ako je apotema piramide jednaka strani njene osnove.
  4. RAVS- pravilna trouglasta piramida. Konstruirajte linearni ugao diedarskog ugla u osnovi piramide.

S konceptom piramide učenici se susreću mnogo prije nego što su počeli proučavati geometriju. Greška je u čuvenim velikim egipatskim čudima svijeta. Stoga, kada počnu proučavati ovaj divni poliedar, većina učenika to već jasno zamišlja. Sve gore navedene atrakcije imaju pravilan oblik. Šta se desilo pravilne piramide, a koja svojstva ima bit će riječi dalje.

U kontaktu sa

Definicija

Postoji dosta definicija piramide. Od davnina je veoma popularan.

Na primjer, Euklid ga je definirao kao tjelesnu figuru koja se sastoji od ravni koje se, polazeći od jedne, konvergiraju u određenoj tački.

Heron je dao precizniju formulaciju. Insistirao je da je to cifra koja ima osnovu i ravni u obliku trokuta, konvergirajući u jednoj tački.

Na osnovu savremene interpretacije, piramida je predstavljena kao prostorni poliedar, koji se sastoji od određenog k-ugla i k ravnih trouglastih figura, koje imaju jednu zajedničku tačku.

Pogledajmo to detaljnije, od kojih elemenata se sastoji:

  • K-ugao se smatra osnovom figure;
  • 3-kutni oblici strše kao ivice bočnog dijela;
  • gornji dio iz kojeg potiču bočni elementi naziva se vrh;
  • svi segmenti koji povezuju vrh nazivaju se ivicama;
  • ako se ravna linija spusti iz vrha u ravan figure pod uglom od 90 stepeni, tada je njen deo sadržan u unutrašnjem prostoru visina piramide;
  • u bilo kojem bočnom elementu, okomita, nazvana apotema, može se povući na stranu našeg poliedra.

Broj ivica se izračunava pomoću formule 2*k, gdje je k broj stranica k-ugla. Koliko strana ima poliedar kao što je piramida može se odrediti pomoću izraza k+1.

Bitan! Piramida pravilnog oblika je stereometrijska figura čija je osnovna ravan k-ugao sa jednakim stranicama.

Osnovna svojstva

Ispravna piramida ima mnogo svojstava, koje su jedinstvene za nju. Nabrojimo ih:

  1. Osnova je figura pravilnog oblika.
  2. Rubovi piramide koji ograničavaju bočne elemente imaju jednake numeričke vrijednosti.
  3. Bočni elementi su jednakokraki trouglovi.
  4. Osnova visine figure pada u centar poligona, a istovremeno je centralna tačka upisanog i opisanog.
  5. Sva bočna rebra su nagnuta prema ravni baze pod istim uglom.
  6. Sve bočne površine imaju isti ugao nagiba u odnosu na bazu.

Zahvaljujući svim navedenim svojstvima, izvođenje proračuna elemenata je mnogo jednostavnije. Na osnovu gore navedenih svojstava obraćamo pažnju na dva znaka:

  1. U slučaju kada se poligon uklapa u krug, bočne strane će imati jednake uglove sa bazom.
  2. Kada se opisuje kružnica oko poligona, sve ivice piramide koje izlaze iz vrha imat će jednake dužine i jednake uglove sa bazom.

Osnova je kvadrat

Pravilna četvorougaona piramida - poliedar čija je osnova kvadrat.

Ima četiri bočne strane, koje su po izgledu jednakokračne.

Kvadrat je prikazan na ravni, ali je zasnovan na svim svojstvima pravilnog četverougla.

Na primjer, ako je potrebno povezati stranu kvadrata sa njegovom dijagonalom, onda koristite sljedeću formulu: dijagonala je jednaka proizvodu stranice kvadrata i kvadratnog korijena iz dva.

Zasnovan je na pravilnom trouglu

Pravilna trouglasta piramida je poliedar čija je osnova pravilan trougao.

Ako je osnova pravilan trokut, a bočne ivice jednake su rubovima baze, onda je takav lik nazvan tetraedar.

Sve strane tetraedra su jednakostranični trouglovi. U ovom slučaju morate znati neke točke i ne gubiti vrijeme na njih prilikom izračunavanja:

  • ugao nagiba rebara prema bilo kojoj osnovi je 60 stepeni;
  • veličina svih unutrašnjih strana je takođe 60 stepeni;
  • svako lice može poslužiti kao osnova;
  • , nacrtani unutar figure, to su jednaki elementi.

Presjeci poliedra

U svakom poliedru postoje nekoliko vrsta sekcija stan. Često u školskom kursu geometrije rade sa dvoje:

  • aksijalni;
  • paralelno sa osnovom.

Aksijalni presek se dobija presecanjem poliedra sa ravninom koja prolazi kroz vrh, bočne ivice i osu. U ovom slučaju, os je visina povučena iz vrha. Rezna ravnina je ograničena linijama presjeka sa svim stranama, što rezultira trokutom.

Pažnja! U pravilnoj piramidi, aksijalni presjek je jednakokraki trokut.

Ako rezna ravnina ide paralelno sa bazom, onda je rezultat druga opcija. U ovom slučaju imamo lik poprečnog presjeka sličan bazi.

Na primjer, ako je u osnovi kvadrat, tada će i presjek paralelan s bazom biti kvadrat, samo manjih dimenzija.

Prilikom rješavanja zadataka pod ovim uvjetom koriste znakove i svojstva sličnosti figura, na osnovu Talesove teoreme. Prije svega, potrebno je odrediti koeficijent sličnosti.

Ako se ravnina povuče paralelno s bazom i odsiječe gornji dio poliedra, onda se u donjem dijelu dobije pravilna skraćena piramida. Tada se za osnove skraćenog poliedra kaže da su slični poligoni. U ovom slučaju, bočne strane su jednakokraki trapezi. Aksijalni presjek je također jednakokraki.

Da bi se odredila visina skraćenog poliedra, potrebno je povući visinu u aksijalnom presjeku, odnosno u trapezu.

Površine

Glavni geometrijski problemi koji se moraju riješiti u školskom predmetu geometrije su određivanje površine i zapremine piramide.

Postoje dvije vrste vrijednosti površine:

  • površina bočnih elemenata;
  • površine cele površine.

Iz samog imena je jasno o čemu je reč. Bočna površina uključuje samo bočne elemente. Iz ovoga slijedi da da biste ga pronašli, jednostavno trebate sabrati površine bočnih ravnina, odnosno površine jednakokračnih 3-kuta. Pokušajmo izvući formulu za površinu bočnih elemenata:

  1. Površina jednakokračnog 3-ugla je Str=1/2(aL), gdje je a stranica baze, L je apotema.
  2. Broj bočnih ravni zavisi od vrste k-ugla u bazi. Na primjer, pravilna četverokutna piramida ima četiri bočne ravni. Stoga je potrebno sabrati površine četiri cifre Sside=1/2(aL)+1/2(aL)+1/2(aL)+1/2(aL)=1/2*4a*L. Izraz je pojednostavljen na ovaj način jer je vrijednost 4a = Rosn, gdje je Rosn obim baze. A izraz 1/2*Rosn je njegov poluperimetar.
  3. Dakle, zaključujemo da je površina bočnih elemenata pravilne piramide jednaka umnošku poluperimetra osnove i apoteme: Sside = Rosn * L.

Površina ukupne površine piramide sastoji se od zbira površina bočnih ravnina i osnove: Sp.p. = Sside + Sbas.

Što se tiče površine baze, ovdje se formula koristi prema vrsti poligona.

Zapremina pravilne piramide jednak proizvodu površine osnovne ravni i visine podijeljene sa tri: V=1/3*Sbas*H, gdje je H visina poliedra.

Šta je pravilna piramida u geometriji

Svojstva pravilne četvorougaone piramide



Slični članci