Дыхание аэробное. Анаэробное и аэробное дыхание – особенности процесса. Клеточное дыхание

Анаэробное дыхание – это особый процесс, направленный на выработку энергии в организме, осуществляемый без участия кислорода извне. В основном, оно характерно для микроорганизмов. При определенных условиях клетки человеческого тела также могут дышать анаэробно. В чем состоят особенности данного процесса?

Обычное аэробное дыхание осуществляется при обязательном участии кислорода. Этот газ необходим для окисления липидов и углеводов. В результате реакции появляется энергия, необходимая для поддержания нормальной работы организма, а также углекислый газ и вода. При анаэробном дыхании роль окислителя выполняет кислород неорганических веществ – сульфатов, нитратов или других. То есть, для поддержания жизнедеятельности организма не требуется внешняя подпитка.

Клеточное дыхание является гораздо более медленным процессом, чем аэробное. Именно поэтому последнее для организма считается предпочтительным. Однако, в условиях нехватки О2, анаэробное дыхание отлично помогает человеку сохранять свое здоровье, поддерживать молодость.

Можно констатировать, что кислородное голодание для современного человека, не редкость. Из-за гиподинамии, загрязненности воздуха, различных нарушений здоровья О2 не поступает в организм в нужных количествах. Но даже при нормальном транспорте он может не усваиваться достаточно эффективно. Поэтому организм теряет возможность вырабатывать энергию в нужных количествах. Из-за этого человек быстро утомляется, его преследуют депрессии, стрессы и другие нарушения здоровья. В такой ситуации анаэробное дыхание становится настоящим спасением.

Благодаря умению клеток дышать без кислорода, организм получает недостающую энергию для поддержания своей жизнедеятельности. А значит, человек может не беспокоиться из-за болезней.

Однако, клеточное дыхание требует запуска некоторых внутренних механизмов оздоровления. Открыть резервы можно либо при помощи йоги, либо более бережно и быстро – с использованием . Благодаря занятиям на аппарате организм лучше усваивает кислород, поступающий в процессе аэробного дыхания. Клетки становятся здоровыми, их резервы раскрываются, и они научаются дышать без кислорода.

Тренажер достаточно использовать всего 15-20 минут в день и уже через несколько недель можно почувствовать значительное улучшение самочувствия.

Анаэробное дыхание на ТДИ-поможет восполнить недостаток энергии и вернет здоровье вам и вашей семье!

Используйте новейшую технологию для восстановления иммунитета дыхательный тренажер ТДИ-01 "Третье дыхание" и болезни покинут Вас!

Гликолизом называют последовательность реакций, в результате которых одна молекула глюкозы расщепляется на две молекулы пировиноградной кислоты. Эти реакции протекают не в митохондриях, а в цитоплазме, и для них не требуется присутствия кислорода. На первом этапе две молекулы АТР потребляются в реакциях фосфорилирования, а на втором – четыре молекулы АТР образуются. Поэтому чистый выход АТР при гликолизе равен двум молекулам. Кроме того, при гликолизе освобождаются четыре атома водорода. Суммарную реакцию гликолиза можно записать так:

С 6 Н 12 О 6 →2С 3 Н 4 О 3 + 4Н + 2АТФ

Конечная судьба пировиноградной кислоты зависит от присутствия кислорода в клетке. Если кислород имеется, то пировиноградная кислота переходит в митохондрии для полного окисления до углекислого газа и воды (аэробное дыхание). Если же кислорода нет, то она превращается либо в этанол, либо в молочную кислоту (анаэробное дыхание).

Аэробное дыхание.

Аэробное дыхание распадается на две фазы. В первой из них при достаточном количестве кислорода каждая молекула пировиноградной кислоты поступает в митохондрию, где она полностью окисляется анаэробным путем. Сначала происходит окислительное декарбоксилирование пировиноградной кислоты, т.е. отщепление СО 2 с одновременным окислением путем дегидрирования. Во время этих реакций пировиноградная кислота соединяется с веществом, которое называется коферментом А (сокращенно его часто обозначают КоА или КоАS-Н), в результате чего образуется ацетилкофермент А. Количество выделяющейся при этом энергии достаточно для образования в молекуле ацетилкофермента А высокоэнергетической связи.

Вторую фазу аэробного дыхания составляет цикл Кребса. Ацетильная группа ацетил-КоА, содержащая два атома углерода, включается в цикл Кребса при гидролизе ацетил-КоА. В конце цикла щавелевоуксусная кислота регенерируется. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. На каждую окисленную молекулу ацетил-КоА образуется: одна молекула АТР, четыре пары атомов водорода и две молекулы углекислого газа.

Анаэробное дыхание.

Многие микроорганизмы (анаэробы) получают большую часть своего АТР за счет анаэробного дыхания. Для некоторых бактерий сколько-нибудь значительные количества кислорода вообще губительны, так что они вынуждены жить там, где кислород отсутствует. Такие организмы называют облигатными анаэробами.

Эффективность превращения энергии при аэробном и анаэробном дыхании.

Аэробное дыхание

С 6 Н 12 О 6 +6О 2 → 6СО 2 + 6Н 2 О + 38АТФ

G = -2880 кДж/моль

Эффективность = 38 х (-30,6) = 40,37%

(-30,6 кДж – это величина свободной энергии, образующейся при гидролизе АТФ до АДФ)

Анаэробное дыхание

1) Дрожжевое (спиртовое) брожение

С 6 Н 12 О 6 +6О 2 → 2С 2 Н 5 ОН + 2СО 2 +2АТФ

G = -210 кДж/моль

Эффективность = 2 х (-30,6) = 29,14%

2) Гликолиз в мышцах (молочнокислое брожение):

С 6 Н 12 О 6 +6О 2 → 2СН 3 СНОНСООН + 2АТФ

G = -150 кДж/моль

Эффективность = 2 х (-30,6) = 40,80%

Приведенные цифры показывают, что эффективность превращения энергии в каждой из этих систем довольно высока. Количество же энергии, запасаемой в виде АТР при аэробном дыхании в 19 раз больше, чем при анаэробном. Объясняется это тем, что значительная часть энергии остается «запертой» в этаноле и молочной кислоте. Энергия, заключенная в этаноле, остается для дрожжей навсегда недоступной, и, значит, спиртовое брожение в смысле получения энергии – малоэффективный процесс. Из молочной же кислоты довольно большое количество энергии может быть извлечено позднее, если появится кислород.

Роль митохондрий в регуляции метаболизма. Акцепторный контроль дыхания. В дышащих митохондриях скорость переноса электронов, а следовательно, и скорость образования АТР, определяется в первую очередь относительными концентрациями АДР, АТР и фосфата во внешней среде, а не концентрацией субстратов дыхания, например пирувата. В условиях избытка дыхательного субстрата максимальная скорость потребления кислорода достигается при высокой концентрации АДР и фосфата и низкой концентрации АТР. Если же концентрация АТР велика, а концентрация АДР и (или) фосфата близка к нулю, то скорость дыхания митохондрий оказывается очень низкой, всего лишь 5-10% максимальной скорости. Из указанных трех компонентов наибольшее влияние на скорость дыхания оказывает концентрация АДР, поскольку митохондрии обладают особенно сильным сродством именно к АДР. Изменение скорости дыхания с изменением концентрации АДР, носит название дыхательного контроля или акцепторного контроля. Зависимость скорости дыхания от концентрации АДР можно наблюдать не только на изолированных митохондриях, но и в интактных клетках. Для мышцы, находящейся в состоянии покоя и не потребляющей АДР, характерна очень низкая скорость дыхания. В этих условиях концентрация АТР высока, а концентрация АДР низка. Если вызвать в такой покоящейся мышце серию сокращений, то ее цитоплазматический АТР быстро распадается на АДР и фосфат. Начало сокращений сопровождается резким увеличением скорости потребления кислорода, которая в некоторых мышцах может возрастать больше чем в 100 раз. Сигналом для такого увеличения скорости дыхания служит внезапное возрастание концентрации АДР при сокращении мышцы, которое сразу стимулирует дыхание и сопровождающее его фосфорилирование АДР. Высокая скорость дыхания сохраняется до тех пор, пока АТР-зависимая сократительная система продолжает поставлять АДР. Когда серия сокращений заканчивается и образование АДР прекращается, скорость дыхания автоматически и быстро снижается до уровня, соответствующего состоянию покоя.

Аэробное дыхание как способ получения энергии микроорганизмами

Дыхание - Это ступенчатый, ферментативный, окислительно-восстановительный процесс расщепления углеводов, окислителем которых является свободный или связанный кислород. Если в качестве окислителя выступает молекулярный кислород воздуха, дыхание называется аэробным.

Выделяют аЭробное дыхание: с полным окислением с неполным окислением

Органических субстратов органических субстратов

Процесс аэробного дыхания протекает по схеме:

C6H12O6 + 6O2 → 6CO2 + 6H2O + 38AT Ф

Характеристика аэробного дыхания с полным окисление органических субстратов:

1.Субстраты дыхания – органические вещества (углеводы, кислоты, жиры);

2.Продукты дыхания – минеральные вещества (Н2О, CO2);

3.Биологический смысл – получение энергии;

4.Условия – аэробные (наличие молекулярного) кислорода

5.Механизм аэробного дыхания. Выделяют три основных этапа дыхания:

I ) Универсальный (гликолиз ):

С6Н12О6 → 2СН3СОСООН + 2НАД Н2 + 2АТФ

II ) Цикл Кребса . На этом этапе происходит последовательное отщепление трех углеродных атомов от пировиноградной кислоты. В результате ферментативного декарбоксилирования образутся три молекулы СО2 и восстанавливаются пять дегидрогеназ (на каждую триозу). При распаде одной молекулы глюкозы в гликолизе образуется 2 молекулы ПВК, следовательно все коэффициенты уравнения умножаются на два. Суммарное уравнение цикла кребса выглядит так:

2 х (СН3СОСООН + 3Н2О → 3СО2 + 4НАД Н2 + 1ФАД Н2 + 1АТФ)

III ) Собственная аэробная фаза – проходит в ЭТЦ (электронтранспортная цепь) по схеме:

10 НАД Н2 + 2ФАД Н2 + О2 ® 10 НАД + 2ФАД + 12Н2О+ Е

Суть третьей фазы дыхания сводится к передаче водорода дегидрогеназ (НАД и ФАД) на кислород (О2) по дыхательной (электротранспортной) цепи - ЭТЦ. Компоненты ЭТЦ располагаются в мембранах в порядке увеличения окислительного потенциала (рис. 16).

В трех местах этой цепи выделяется энергии столько, что становится возможным синтез макроэргической связи АТФ. При полном окислении НАД Н2 образуется 3 молекулы АТФ. При полном окислении ФАД Н2 - 2 молекулы АТФ.

К моменту завершения второй фазы дыхания в наличии имеется 10 молекул НАД Н2 (8 образовались на этапе цикла Кребса, 2 – из гликолиза), 2 молекулы ФАД Н2 (образовались в цикле Кребса). Произведем простой расчет энергетического выхода аэробной фазы дыхания:

1 моль НАД Н2 эквивалентен 3 моль АТФ, следовательно при полном окислении 10 НАД Н2 х 3 АТФ образуется 30 АТФ;

При полном окислении 1 моль ФАД Н2 образуется 2 моль АТФ, отсюда получается: 2 ФАД Н2 х 2 АТФ = 4 АТФ. Всего в ЭТЦ образуется 34 моль АТФ. К ним следует прибавить 2 молекулы АТФ из цикла Кребса и 2 молекулы - из гликолиза. Итого – 38 АТФ – результат полного окисления одной молекулы глюкозы.

Типы анаэробного дыхания (нитратное, сульфатное)

Для процессов дыхания необходим в качестве окислителя кислород. Если присутствует молекулярный кислород - дыхание называется Аэробным. Если окислителем является связанный кислород - дыхание называется Анаэробным. Конечным акцептором водорода и электронов может быть кислород нитратов или сульфатов (NO3 или SO4 ). В качестве энергетических субстратов бактерии могут использовать углеводы, спирты, органические кислоты и др. Выделяют два основных типа анаэробного дыхания:

1) Нитратное дыхание (окислителем является кислород нитратов) – проходит по схеме:

С6Н12О6 + 4 NO 3 - → 6СО3 + 6Н2О +2 N 2 + E

Процесс носит название денитрификации. Возбудителями являются факультативно-анаэробные бактерии такие как Pseudomonas aeruginosae , Paracoc С Us Denitrific А Ns .

2) Сульфатное дыхание (окислителем является кислород сульфатов) – проходит по схеме:

C6H12O6 + 3H2SO4→6CO2 + 6H2O + 3H2S + E

Процесс носит название десульфофикации. Возбудителями являются облигатные анаэробы вида Desulfovibrio Desulfuricans .


Аэробное дыхание - 4.4 out of 5 based on 13 votes

Анаэробное и аэробное дыхание

Дыхание - совокупность реакций биологического окисления органических енерговмисних веществ с выделением энергии, необходимой для жизнедеятельности организма. Дыхание является процессом, при котором атомы водорода (электроны) переносятся от органических веществ на молекулярный кислород. Выделяют два основных типа дыхания: анаэробное и аэробное.

Аэробное дыхание - совокупность процессов, осуществляющих окисление органических веществ и получения энергии с участием кислорода. Расщепление органических веществ является полным и происходит с образованием конечных продуктов окисления Н2О и СО2. Характерно аэробное дыхание для подавляющего большинства организмов и проходит в митохондриях клетки. Аэробные организмы в процессе дыхания могут окиснюваты различные органические соединения: углеводы, жиры, белки и т. В аэробных организмов окисления протекает с использованием кислорода в качестве акцептора (приемника) электрона до углекислого газа и воды. Аэробное дыхание - самый способ образования энергии. В основе - полное расщепление, которое происходит с участием реакций бескислородного и кислородного этапов энергетического обмена. Аэробное дыхание играет основную роль в обеспечении клеток энергией и рощепленни веществ до конечных продуктов окисления - воды и углекислого газа.

Ядро - это крепость, где спрятана главная разгадка самовоспроизведению жизни.

Введение

1. Аэробное дыхание

2. Анаэробное дыхание

2.1 Типы анаэробного дыхания

4.Список литературы


Введение

Дыхание присуще всем живым организмам. Оно представляет собой окислительный распад органических веществ, синтезированных в процессе фотосинтеза, протекающих с потреблением кислорода и выделением диоксида углерода. А.С. Фаминцын рассматривал фотосинтез и дыхание как две последовательные фазы питания растений: фотосинтез готовит углеводы, дыхание перерабатывает их в структурную биомассу растения, образуя в процессе ступенчатого окисления реакционноспособные вещества и освобождая энергию, необходимую для их превращения и процессов жизнедеятельности в целом. Суммарное уравнение дыхания имеет вид:

CHO+ 6O→ 6CO+ 6HO + 2875кДж.

Из этого уравнения становится ясно, почему именно скорость газообмена используют для оценки интенсивности дыхания. Оно было предложено в 1912 г. В. И. Палладиным, который считал, что дыхание состоит из двух фаз – анаэробной и аэробной. На анаэробном этапе дыхания, идущем в отсутствие кислорода, глюкоза окисляется за счет отнятия водорода (дегидрирования), который, по мнению ученого, передается на дыхательный фермент. Последний при этом восстанавливается. На аэробном этапе происходит регенерация дыхательного фермента в окислительную форму. В. И. Палладин впервые показал, что окисление сахара идет за счет непосредственного окисления его кислородом воздуха, поскольку кислород не встречается с углеродом дыхательного субстрата, а связано с его дегидрированием.

Существенный вклад в изучение сути окислительных процессов и химизма процесса дыхания внесли как отечественные (И.П. Бородин, А.Н.Бах, С.П. Костычев, В.И. Палладин), так и зарубежные (А.Л. Лавуазье, Г. Виланд, Г. Кребс) исследователи.

Жизнь любого организма неразрывно связана с непрерывным использованием свободной энергии, генерируемой при дыхании. Неудивительно, что изучению роли дыхания в жизни растения в последнее время отводят центральное место в физиологии растений.


1. Аэробное дыхание

Аэробное дыхание это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз – многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С). При этом образуется две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД(никотинамидадениндинклеотид), который переходит в свою восстановительную форму НАД ∙ Н + Н. НАД кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты – одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

а второй присоединяется к НАД или НАДФ целиком:

НАД+ Н + [Н+ е] → НАД ∙ Н + Н.

Свободный протон позднее используется для обратного окисления кофермента. Суммарно реакция гликолиза имеет вид

CHO+2АДФ + 2НРО+ 2 НАД→

2СНО+ 2АТФ + 2 НАД ∙ Н + Н+ 2 HO

Продукт гликолиза – пировиноградная кислота (СНО) – заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до COи HO. Этот процесс можно разделить на три основные стадии:

1) окислительное декарбоксилирование пировиноградной кислоты;

2) цикл трикарбоновых кислот (цикл Кребса);

3) заключительная стадия окисления – электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А, в результате чего образуется ацетилкофермент а с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO(первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н.

Вторая стадия – цикл Кребса (рис. 1)

В цикл Кребса вступает ацетил–КоА, образованный на предыдущей стадии. Ацетил–КоА взаимодействует со щавелево-уксусной кислотой, в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил–КоА. В конце цикла щавелево-лимонная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил–КоА, и цикл повторяется. Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + 3HO + 3НАД+ ФАД + АДФ + НРО→

КоА + 2CO+ 3НАД ∙ Н + Н+ФАД ∙ H+ АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется 3CO, 4 НАД ∙ Н + Н, ФАД ∙ H. Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

CHO+ 6 HO + 10 НАД + 2ФАД →

6CO+ 4АТФ + 10 НАД ∙ Н + Н+ 2ФАД ∙ H.

Третья стадия – электротранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до HO с одновременным фосфолированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ Hи ФАД ∙ H, передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2 Н+ 2е. Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.

С помощью переносчиков ионы водорода Нпереносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство (рис. 2).


При переносе пары электронов от над на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе протоны переносятся на внутреннюю сторону мембраны и акцептируются кислородом:

В результате такого переноса ионов Нна внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается концентрация их, т.е. возникает электрохимический градиент протонов.

Когда протонный градиент достигает определенной величины, ионы водорода из Н-резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О, и образуется вода: 2Н+ О²ˉ → HO.

1.1 Окислительное фосфолирование

Процесс образования АТФ в результате переноса ионов Нчерез мембрану митохондрии получил название окислительного фосфолирования. Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Нчерез мембрану).

Суммарное уравнение аэробного дыхания можно выразить следующим образом:

CHO+ O+ 6HO + 38АДФ + 38НРО→

6CO+ 12HO + 38АТФ

Совершенно очевидно, что аэробное дыхание прекратится в отсутствии кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии дл образования АТФ окажется блокированным.

аэробное дыхание окисление фотосинтез


2. Анаэробное дыхание

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот, превращающиеся при этом в более восстановленные соединения. Процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

2HNO+ 12Н→ N+ 6HO + 2Н

HSO+ 8Н→ HS + 4HO

У микроорганизмов, осуществляющих такое дыхание, конечным акцептором электронов будет не кислород а неорганическое соединения – нитриты, сульфаты и карбонаты. Таким образом, различия между аэробным и анаэробным дыханием заключается в природе конечного акцептора электронов.

2.1 Типы анаэробного дыхания

Основные типы анаэробного дыхания приведены в таблице 1. есть также данные об использовании бактериями в качестве акцепторов электронов Mn, хроматов, хинонов и др.

Таблица 1 Типы анаэробного дыхания у прокариот (по: М.В Гусев, Л.А. Минеева 1992, с изменениями)

Свойство организмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обуславливает возможность получения большого количества энергии, чем при брожении. При анаэробном дыхании выход энергии только на 10% ниже. Чем при аэробном. Организмы, для которых характерно анаэробное дыхание, имеют набор ферментов электронтранспортной цепи. Но цитохромоксилаза в них заменяется нитратредуктазой (при использовании в качестве акцептора электронов нитрата) или аденилсульфатредуктазой (при использовании сульфата) или другими ферментами.

Организмы, способные осуществлять анаэробное дыхание за счет нитратов, - факультативные анаэробы. Организмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробам.


Вывод

Органические вещества из не органических зеленое растение образует только на свету. Эти вещества используются растением только для питания. Но растения не только питаются. Они дышат, как все живые существа. Дыхание происходит непрерывно днем о ночью. Дышат все органы растения. Растения дышат кислородом, а выделяют углекислый газ, как животные и человек.

Дыхание растений может происходить, как в темноте, так и на свету. Значит, на свету в растении протекают два противоположных процесса. Один процесс - фотосинтез, другой – дыхание. Во время фотосинтеза создаются органические вещества из неорганических и поглощается энергия солнечного света. Во время дыхания в растении расходуются органические вещества. А энергия, необходима для жизнедеятельности, освобождается. На свету в процессе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Вместе с углекислым газом растения на свету поглощают из окружающего воздуха и кислород, необходимый растениям для дыхания, но в гораздо меньших количествах, чем выделяются при образовании сахара. Углекислого газа при фотосинтезе растения поглощают гораздо больше, чем выделяют его придыхании. Декоративные растения в комнате при хорошем освещении выделяют днем значительно больше кислорода, чем поглощают его в темноте ночью.

Дыхание во всех живых органов растения происходит непрерывно. Когда прекращается дыхание, растение, так же как и животное погибает.


Список литературы

1. Физиология и биохимия сельскохозяйственных растений Ф50/Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др.; под. ред. Н.Н. Третьякова. – М.; Колос, 2000 – 640 с.

2. Биология в экзаменационных вопросах и ответах Л44/ Лемеза Н.А., Камлюк Л.В.; 7-е изд. – М.: Айрис-пресс, 2003. – 512 с.

3. Ботаника: Учеб. Для 5-6 кл. сред. Шк.-19-е изд./Перераб. А.Н. Сладковым. – М.: Просвещение, 1987. – 256 с.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...