Наименьшее общее кратное онлайн калькулятор в столбик. Наименьшее общее кратное (НОК) – определение, примеры и свойства

Наименьшее общее кратное двух чисел непосредственно связано с наибольшим общим делителем этих чисел. Эта связь между НОД и НОК определяется следующей теоремой.

Теорема.

Наименьшее общее кратное двух положительных целых чисел a и b равно произведению чисел a и b , деленному на наибольший общий делитель чисел a и b , то есть, НОК(a, b)=a·b:НОД(a, b) .

Доказательство.

Пусть М – какое-нибудь кратное чисел a и b . То есть, М делится на a , и по определению делимости существует некоторое целое число k такое, что справедливо равенство M=a·k . Но М делится и на b , тогда a·k делится на b .

Обозначим НОД(a, b) как d . Тогда можно записать равенства a=a 1 ·d и b=b 1 ·d , причем a 1 =a:d и b 1 =b:d будут взаимно простыми числами . Следовательно, полученное в предыдущем абзаце условие, что a·k делится на b , можно переформулировать так: a 1 ·d·k делится на b 1 ·d , а это в силу свойств делимости эквивалентно условию, что a 1 ·k делится на b 1 .

Также нужно записать два важных следствия из рассмотренной теоремы.

    Общие кратные двух чисел совпадают с кратными их наименьшего общего кратного.

    Это действительно так, так как любое общее кратное M чисел a и b определяется равенством M=НОК(a, b)·t при некотором целом значении t .

    Наименьшее общее кратное взаимно простых положительных чисел a и b равно их произведению.

    Обоснование этого факта достаточно очевидно. Так как a и b взаимно простые, то НОД(a, b)=1 , следовательно, НОК(a, b)=a·b:НОД(a, b)=a·b:1=a·b .

Наименьшее общее кратное трех и большего количества чисел

Нахождение наименьшего общего кратного трех и большего количества чисел можно свести к последовательному нахождению НОК двух чисел. Как это делается, указано в следующей теореме.a 1 , a 2 , …, a k совпадают с общими кратными чисел m k-1 и a k , следовательно, совпадают с кратными числа m k . А так как наименьшим положительным кратным числа m k является само число m k , то наименьшим общим кратным чисел a 1 , a 2 , …, a k является m k .

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Второе число: b=

Разделитель разрядов Без разделителя пробел " ´

Результат:

Наибольший общий делитель НОД(a ,b )=6

Наименьшее общее кратное НОК(a ,b )=468

Наибольшее натуральное число, на которое делятся без остатка числа a и b, называется наибольшим общим делителем (НОД) этих чисел. Обозначается НОД(a,b), (a,b), gcd(a,b) или hcf(a,b).

Наименьшее общее кратное (НОК) двух целых чисел a и b есть наименьшее натуральное число, которое делится на a и b без остатка. Обозначается НОК(a,b), или lcm(a,b).

Целые числа a и b называются взаимно простыми , если они не имеют никаких общих делителей кроме +1 и −1.

Наибольший общий делитель

Пусть даны два положительных числа a 1 и a 2 1). Требуется найти общий делитель этих чисел, т.е. найти такое число λ , которое делит числа a 1 и a 2 одновременно. Опишем алгоритм.

1) В данной статье под словом число будем понимать целое число.

Пусть a 1 ≥ a 2 , и пусть

где m 1 , a 3 некоторые целые числа, a 3 <a 2 (остаток от деления a 1 на a 2 должен быть меньше a 2).

Предположим, что λ делит a 1 и a 2 , тогда λ делит m 1 a 2 и λ делит a 1 −m 1 a 2 =a 3 (Утверждение 2 статьи "Делимость чисел. Признак делимости"). Отсюда следует, что всякий общий делитель a 1 и a 2 является общим делителем a 2 и a 3 . Справедливо и обратное, если λ общий делитель a 2 и a 3 , то m 1 a 2 и a 1 =m 1 a 2 +a 3 также делятся на λ . Следовательно общий делитель a 2 и a 3 есть также общий делитель a 1 и a 2 . Так как a 3 <a 2 ≤a 1 , то можно сказать, что решение задачи по нахождению общего делителя чисел a 1 и a 2 сведено к более простой задаче нахождения общего делителя чисел a 2 и a 3 .

Если a 3 ≠0, то можно разделить a 2 на a 3 . Тогда

,

где m 1 и a 4 некоторые целые числа, (a 4 остаток от деления a 2 на a 3 (a 4 <a 3)). Аналогичными рассуждениями мы приходим к выводу, что общие делители чисел a 3 и a 4 совпадают с общими делителями чисел a 2 и a 3 , и также с общими делителями a 1 и a 2 . Так как a 1 , a 2 , a 3 , a 4 , ... числа, постоянно убывающие, и так как существует конечное число целых чисел между a 2 и 0, то на каком то шаге n , остаток от деления a n на a n+1 будет равен нулю (a n+2 =0).

.

Каждый общий делитель λ чисел a 1 и a 2 также делитель чисел a 2 и a 3 , a 3 и a 4 , .... a n и a n+1 . Справедливо и обратное, общие делители чисел a n и a n+1 являются также делителями чисел a n−1 и a n , .... , a 2 и a 3 , a 1 и a 2 . Но общий делитель чисел a n и a n+1 является число a n+1 , т.к. a n и a n+1 без остатка делятся на a n+1 (вспомним, что a n+2 =0). Следовательно a n+1 является и делителем чисел a 1 и a 2 .

Отметим, что число a n+1 является наибольшим из делителей чисел a n и a n+1 , так как наибольший делитель a n+1 является сам a n+1 . Если a n+1 можно представить в виде произведения целых чисел, то эти числа также являются общими делителями чисел a 1 и a 2 . Число a n+1 называют наибольшим общим делителем чисел a 1 и a 2 .

Числа a 1 и a 2 могут быть как положительными, так и отрицательными числами. Если один из чисел равен нулю, то наибольший общий делитель этих чисел будет равен абсолютной величине другого числа. Наибольший общий делитель нулевых чисел не определен.

Вышеизложенный алгоритм называется алгоритмом Евклида для нахождения наибольшего общего делителя двух целых чисел.

Пример нахождения наибольшего общего делителя двух чисел

Найти наибольший общий делитель двух чисел 630 и 434.

  • Шаг 1. Делим число 630 на 434. Остаток 196.
  • Шаг 2. Делим число 434 на 196. Остаток 42.
  • Шаг 3. Делим число 196 на 42. Остаток 28.
  • Шаг 4. Делим число 42 на 28. Остаток 14.
  • Шаг 5. Делим число 28 на 14. Остаток 0.

На шаге 5 остаток от деления равен 0. Следовательно наибольший общий делитель чисел 630 и 434 равен 14. Заметим, что числа 2 и 7 также являются делителями чисел 630 и 434.

Взаимно простые числа

Определение 1. Пусть наибольший общий делитель чисел a 1 и a 2 равен единице. Тогда эти числа называются взаимно простыми числами , не имеющими общего делителя.

Теорема 1. Если a 1 и a 2 взаимно простые числа, а λ какое то число, то любой общий делитель чисел λa 1 и a 2 является также общим делителем чисел λ и a 2 .

Доказательство. Рассмотрим алгоритм Евклида для нахождения наибольшего общего делителя чисел a 1 и a 2 (см. выше).

.

Из условия теоремы следует, что наибольшим общим делителем чисел a 1 и a 2 , и следовательно a n и a n+1 является 1. Т.е. a n+1 =1.

Умножим все эти равенства на λ , тогда

.

Пусть общий делитель a 1 λ и a 2 есть δ . Тогда δ входит множителем в a 1 λ , m 1 a 2 λ и в a 1 λ -m 1 a 2 λ =a 3 λ (см. "Делимость чисел",Утверждение 2). Далее δ входит множителем в a 2 λ и m 2 a 3 λ , и, следовательно, входит множителем в a 2 λ -m 2 a 3 λ =a 4 λ .

Рассуждая так мы убеждаемся, что δ входит множителем в a n−1 λ и m n−1 a n λ , и, следовательно, в a n−1 λ m n−1 a n λ =a n+1 λ . Так как a n+1 =1, то δ входит множителем в λ . Следовательно число δ является общим делителем чисел λ и a 2 .

Рассмотрим частные случаи теоремы 1.

Следствие 1. Пусть a и c простые числа относительно b . Тогда их произведение ac является простым числом относительно b .

Действительно. Из теоремы 1 ac и b имеют тех же общих делителей, что и c и b . Но числа c и b взаимно простые, т.е. имеют единственный общий делитель 1. Тогда ac и b также имеют единственный общий делитель 1. Следовательно ac и b взаимно простые.

Следствие 2. Пусть a и b взаимно простые числа и пусть b делит ak . Тогда b делит и k .

Действительно. Из условия утверждения ak и b имеют общий делитель b . В силу теоремы 1, b должен быть общим делителем b и k . Следовательно b делит k .

Следствие 1 можно обобщить.

Следствие 3. 1. Пусть числа a 1 , a 2 , a 3 , ..., a m простые относительно числа b . Тогда a 1 a 2 , a 1 a 2 ·a 3 , ..., a 1 a 2 a 3 ···a m , произведение этих чисел простое относительно числа b .

2. Пусть имеем два ряда чисел

таких, что каждое число первого ряда простое по отношению каждого числа второго ряда. Тогда произведение

Требуется найти такие числа, которые делятся на каждое из этих чисел.

Если число делится на a 1 , то оно имеет вид sa 1 , где s какое-нибудь число. Если q есть наибольший общий делитель чисел a 1 и a 2 , то

где s 1 - некоторое целое число. Тогда

является наименьшим общим кратным чисел a 1 и a 2 .

a 1 и a 2 взаимно простые, то наименьшее общее кратное чисел a 1 и a 2:

Нужно найти наименьшее общее кратное этих чисел.

Из вышеизложенного следует, что любое кратное чисел a 1 , a 2 , a 3 должно быть кратным чисел ε и a 3 , и обратно. Пусть наименьшее общее кратное чисел ε и a 3 есть ε 1 . Далее, кратное чисел a 1 , a 2 , a 3 , a 4 должно быть кратным чисел ε 1 и a 4 . Пусть наименьшее общее кратное чисел ε 1 и a 4 есть ε 2 . Таким образом выяснили, что все кратные чисел a 1 , a 2 , a 3 ,...,a m совпадают с кратными некоторого определенного числа ε n , которое называют наименьшим общим кратным данных чисел.

В частном случае, когда числа a 1 , a 2 , a 3 ,...,a m взаимно простые, то наименьшее общее кратное чисел a 1 , a 2 как было показано выше имеет вид (3). Далее, так как a 3 простое по отношению к числам a 1 , a 2 , тогда a 3 простое по отношению числа a 1 ·a 2 (Следствие 1). Значит наименьшее общее кратное чисел a 1 ,a 2 ,a 3 является число a 1 · a 2 ·a 3 . Рассуждая аналогичным образом мы приходим к следующим утверждениям.

Утверждение 1. Наименьшее общее кратное взаимно простых чисел a 1 , a 2 , a 3 ,...,a m равен их произведению a 1 ·a 2 ·a 3 ···a m .

Утверждение 2. Любое число, которое делится на каждое из взаимно простых чисел a 1 , a 2 , a 3 ,...,a m делится также на их произведение a 1 ·a 2 ·a 3 ···a m .

Тема «Кратные числа» изучается в 5 классе общеобразовательной школы. Ее целью является совершенствование письменных и устных навыков математических вычислений. На этом уроке вводятся новые понятия - «кратные числа» и «делители», отрабатывается техника нахождения делителей и кратных натурального числа, умение находить НОК различными способами.

Эта тема является очень важной. Знания по ней можно применить при решении примеров с дробями. Для этого нужно найти общий знаменатель путем расчета наименьшего общего кратного (НОК).

Кратным А считается целое число, которое делится на А без остатка.

Каждое натуральное число имеет бесконечное количество кратных ему чисел. Наименьшим считается оно само. Кратное не может быть меньше самого числа.

Нужно доказать, что число 125 кратно числу 5. Для этого нужно первое число разделить на второе. Если 125 делится на 5 без остатка, то ответ положительный.

Данный способ применим для небольших чисел.

При расчёте НОК встречаются особые случаи.

1. Если необходимо найти общее кратное для 2-х чисел (например, 80 и 20), где одно из них (80) делится без остатка на другое (20), то это число (80) и есть наименьшее кратное этих двух чисел.

НОК (80, 20) = 80.

2. Если два не имеют общего делителя, то можно сказать, что их НОК - это произведение этих двух чисел.

НОК (6, 7) = 42.

Рассмотрим последний пример. 6 и 7 по отношению к 42 являются делителями. Они делят кратное число без остатка.

В этом примере 6 и 7 являются парными делителями. Их произведение равно самому кратному числу (42).

Число называется простым, если делится только само на себя или на 1 (3:1=3; 3:3=1). Остальные называются составными.

В другом примере нужно определить, является ли 9 делителем по отношению к 42.

42:9=4 (остаток 6)

Ответ: 9 не является делителем числа 42, потому что в ответе есть остаток.

Делитель отличается от кратного тем, что делитель - это то число, на которое делят натуральные числа, а кратное само делится на это число.

Наибольший общий делитель чисел a и b , умноженный на их наименьшее кратное, даст произведение самих чисел a и b .

А именно: НОД (а, b) х НОК (а, b) = а х b.

Общие кратные числа для более сложных чисел находят следующим способом.

Например, найти НОК для 168, 180, 3024.

Эти числа раскладываем на простые множители, записываем в виде произведения степеней:

168=2³х3¹х7¹

2⁴х3³х5¹х7¹=15120

НОК (168, 180, 3024) = 15120.

Как найти наименьшее общее кратное?

    Нужно найти каждый множитель каждого из двух чисел, у которых находим наименьшее общее кратное, а потом перемножить друг на друга множители, которые совпали у первого и второго числа. Результатом произведения будет искомое кратное.

    Например у нас есть числа 3 и 5 и нам надо найти НОК(наименьшее общее кратное). Нам надо умножать и тройку и пятрку на все числа начиная с 1 2 3 ... и т д пока мы не увидим одинаковое число и там и там.

    Множим тройку и получаем: 3, 6, 9, 12, 15

    Множим пятрку и получаем: 5, 10, 15

    Метод разложения на простые множители - самый классический для нахождения наименьшего общего кратного (НОК) для нескольких чисел. Наглядно и просто продемонстрирован этот метод в следующем видеоролике:

    Складывать, умножать, делить, приводить к общему знаменателю и другие арифметические действия очень увлекательное занятие, особенно восхищают примеры, занимающие целый лист.

    Итак найти общее кратное для двух чисел, которое будет являться самым маленьким числом на которое делятся два числа. Хочу заметить, что не обязательно в дальнейшем прибегать к формулам, чтобы найти искомое, если можешь считать в уме (а это можно натренировать), то цифры сами всплывают в голове и потом дроби щелкаются как орешки.

    Для начала усвоим, что можно умножить два числа друг на друга, а потом эту цифру уменьшать и делить поочередно на данные два числа, так мы найдем наименьшее кратное.

    Например, два числа 15 и 6. Умножаем и получаем 90. Это явно больше число. Причем 15 делится на 3 и 6 делится на 3, значит 90 тоже делим на 3. Получаем 30. Пробуем 30 разделить 15 равно 2. И 30 делим 6 равно 5. Так как 2 это предел, то получается, что наименьшее кратное для чисел 15 и 6 будет 30.

    С цифрами побольше будет немного трудней. но если знать, какие цифры дают нулевой остаток при делении или умножении, то трудностей, в принципе, больших нет.

  • Как найти НОК

    Вот видео, в котором вам будет предложено два способа нахождения наименьшего общего кратного (НОК). Поупражнявшись в использовании первого из предложенных способов, вы сможете лучше понять, что такое наименьшее общее кратное.

  • Представляю ещ один способ нахождения наименьшего общего кратного. Рассмотрим его на наглядном примере.

    Необходимо найти НОК сразу трх чисел: 16, 20 и 28.

    • Представляем каждое число как произведение его простых множителей:
    • Записываем степени всех простых множителей:

    16 = 224 = 2^24^1

    20 = 225 = 2^25^1

    28 = 227 = 2^27^1

    • Выбираем все простые делители (множители) с наибольшими степенями, перемножаем их и находим НОК:

    НОК = 2^24^15^17^1 = 4457 = 560.

    НОК(16, 20, 28) = 560.

    Таким образом, в итоге расчета получилось число 560. Оно является наименьшим общим кратным, то есть делится на каждое из трх чисел без остатка.

    Наименьшее общее кратное число - это такая цифра, которая разделится на несколько предложенных чисел без остатка. Для того, чтобы такую цифру высчитать, надо взять каждое число и разложить его на простые множители. Те цифры, которые совпадают, убираем. Оставляет всех по одной, перемножаем их между собой по очереди и получаем искомое - наименьшее общее кратное.

    НОК, или наименьшее общее кратное , - это наименьшее натуральное число двух и более чисел, которое делится на каждое из данных чисел без остатка.

    Вот пример того, как найти наименьшее общее кратное 30 и 42.

    • Первым делом нужно разложить данные числа на простые множители.

    Для 30 - это 2 х 3 х 5.

    Для 42 - это 2 х 3 х 7. Так как 2 и 3 имеются в разложении числа 30, то вычеркиваем их.

    • Выписываем множители, которые входят в разложение числа 30. Это 2 х 3 х 5 .
    • Теперь нужно домножить их на недостающий множитель, который имеем при разложении 42,а это 7. Получаем 2 х 3 х 5 х 7.
    • Находим, чему равно 2 х 3 х 5 х 7 и получаем 210.

    В итоге получаем, что НОК чисел 30 и 42 равен 210.

    Чтобы найти наименьшее общее кратное , нужно выполнить последовательно несколько простых действий. Рассмотрим это на примере двух чисел: 8 и 12

    1. Разлагаем оба числа на простые множители: 8=2*2*2 и 12=3*2*2
    2. Сокращаем одинаковые множители у одного из чисел. В нашем случае совпадают 2*2, сократим их для числа 12, тогда у 12 останется один множитель: 3.
    3. Находим произведение всех оставшихся множителей: 2*2*2*3=24

    Проверяя, убеждаемся, что 24 делится и на 8 и на 12, причем это наименьшее натуральное число, которое делится на каждое из этих чисел. Вот мы и нашли наименьшее общее кратное .

    Попробую объяснить на примере цифр 6 и 8. Наименьшее общее кратное - это число, которое можно разделить на эти числа(в нашем случае 6 и 8) и остатка не будет.

    Итак, начинаем умножать сначала 6 на 1, 2, 3 и т. д и 8 на 1, 2, 3 и т. д.


Представленный ниже материал является логическим продолжением теории из статьи под заголовком НОК - наименьшее общее кратное, определение, примеры, связь между НОК и НОД . Здесь мы поговорим про нахождение наименьшего общего кратного (НОК) , и особое внимание уделим решению примеров. Сначала покажем, как вычисляется НОК двух чисел через НОД этих чисел. Дальше рассмотрим нахождение наименьшего общего кратного с помощью разложения чисел на простые множители. После этого остановимся на нахождении НОК трех и большего количества чисел, а также уделим внимание вычислению НОК отрицательных чисел.

Навигация по странице.

Вычисление наименьшего общего кратного (НОК) через НОД

Один из способов нахождения наименьшего общего кратного основан на связи между НОК и НОД . Существующая связь между НОК и НОД позволяет вычислять наименьшее общее кратное двух целых положительных чисел через известный наибольший общий делитель. Соответствующая формула имеет вид НОК(a, b)=a·b:НОД(a, b) . Рассмотрим примеры нахождения НОК по приведенной формуле.

Пример.

Найдите наименьшее общее кратное двух чисел 126 и 70 .

Решение.

В этом примере a=126 , b=70 . Воспользуемся связью НОК с НОД, выражающуюся формулой НОК(a, b)=a·b:НОД(a, b) . То есть, сначала нам предстоит найти наибольший общий делитель чисел 70 и 126 , после чего мы сможем вычислить НОК этих чисел по записанной формуле.

Найдем НОД(126, 70) , используя алгоритм Евклида: 126=70·1+56 , 70=56·1+14 , 56=14·4 , следовательно, НОД(126, 70)=14 .

Теперь находим требуемое наименьшее общее кратное: НОК(126, 70)=126·70:НОД(126, 70)= 126·70:14=630 .

Ответ:

НОК(126, 70)=630 .

Пример.

Чему равно НОК(68, 34) ?

Решение.

Так как 68 делится нацело на 34 , то НОД(68, 34)=34 . Теперь вычисляем наименьшее общее кратное: НОК(68, 34)=68·34:НОД(68, 34)= 68·34:34=68 .

Ответ:

НОК(68, 34)=68 .

Заметим, что предыдущий пример подходит под следующее правило нахождения НОК для целых положительные чисел a и b : если число a делится на b , то наименьшее общее кратное этих чисел равно a .

Нахождение НОК с помощью разложения чисел на простые множители

Другой способ нахождения наименьшего общего кратного базируется на разложении чисел на простые множители . Если составить произведение из всех простых множителей данных чисел, после чего из этого произведения исключить все общие простые множители, присутствующие в разложениях данных чисел, то полученное произведение будет равно наименьшему общему кратному данных чисел .

Озвученное правило нахождения НОК следует из равенства НОК(a, b)=a·b:НОД(a, b) . Действительно, произведение чисел a и b равно произведению всех множителей, участвующих в разложениях чисел a и b . В свою очередь НОД(a, b) равен произведению всех простых множителей, одновременно присутствующих в разложениях чисел a и b (о чем написано в разделе нахождение НОД с помощью разложения чисел на простые множители).

Приведем пример. Пусть мы знаем, что 75=3·5·5 и 210=2·3·5·7 . Составим произведение из всех множителей данных разложений: 2·3·3·5·5·5·7 . Теперь из этого произведения исключим все множители, присутствующие и в разложении числа 75 и в разложении числа 210 (такими множителями являются 3 и 5 ), тогда произведение примет вид 2·3·5·5·7 . Значение этого произведения равно наименьшему общему кратному чисел 75 и 210 , то есть, НОК(75, 210)= 2·3·5·5·7=1 050 .

Пример.

Разложив числа 441 и 700 на простые множители, найдите наименьшее общее кратное этих чисел.

Решение.

Разложим числа 441 и 700 на простые множители:

Получаем 441=3·3·7·7 и 700=2·2·5·5·7 .

Теперь составим произведение из всех множителей, участвующих в разложениях данных чисел: 2·2·3·3·5·5·7·7·7 . Исключим из этого произведения все множители, одновременно присутствующие в обоих разложениях (такой множитель только один – это число 7 ): 2·2·3·3·5·5·7·7 . Таким образом, НОК(441, 700)=2·2·3·3·5·5·7·7=44 100 .

Ответ:

НОК(441, 700)= 44 100 .

Правило нахождения НОК с использованием разложения чисел на простые множители можно сформулировать немного иначе. Если ко множителям из разложения числа a добавить недостающие множители из разложения числа b , то значение полученного произведения будет равно наименьшему общему кратному чисел a и b .

Для примера возьмем все те же числа 75 и 210 , их разложения на простые множители таковы: 75=3·5·5 и 210=2·3·5·7 . Ко множителям 3 , 5 и 5 из разложения числа 75 добавляем недостающие множители 2 и 7 из разложения числа 210 , получаем произведение 2·3·5·5·7 , значение которого равно НОК(75, 210) .

Пример.

Найдите наименьшее общее кратное чисел 84 и 648 .

Решение.

Получаем сначала разложения чисел 84 и 648 на простые множители. Они имеют вид 84=2·2·3·7 и 648=2·2·2·3·3·3·3 . К множителям 2 , 2 , 3 и 7 из разложения числа 84 добавляем недостающие множители 2 , 3 , 3 и 3 из разложения числа 648 , получаем произведение 2·2·2·3·3·3·3·7 , которое равно 4 536 . Таким образом, искомое наименьшее общее кратное чисел 84 и 648 равно 4 536 .

Ответ:

НОК(84, 648)=4 536 .

Нахождение НОК трех и большего количества чисел

Наименьшее общее кратное трех и большего количества чисел может быть найдено через последовательное нахождение НОК двух чисел. Напомним соответствующую теорему, дающую способ нахождения НОК трех и большего количества чисел.

Теорема.

Пусть даны целые положительные числа a 1 , a 2 , …, a k , наименьшее общее кратное m k этих чисел находится при последовательном вычислении m 2 =НОК(a 1 , a 2) , m 3 =НОК(m 2 , a 3) , …, m k =НОК(m k−1 , a k) .

Рассмотрим применение этой теоремы на примере нахождения наименьшего общего кратного четырех чисел.

Пример.

Найдите НОК четырех чисел 140 , 9 , 54 и 250 .

Решение.

В этом примере a 1 =140 , a 2 =9 , a 3 =54 , a 4 =250 .

Сначала находим m 2 =НОК(a 1 , a 2)=НОК(140, 9) . Для этого по алгоритму Евклида определяем НОД(140, 9) , имеем 140=9·15+5 , 9=5·1+4 , 5=4·1+1 , 4=1·4 , следовательно, НОД(140, 9)=1 , откуда НОК(140, 9)=140·9:НОД(140, 9)= 140·9:1=1 260 . То есть, m 2 =1 260 .

Теперь находим m 3 =НОК(m 2 , a 3)=НОК(1 260, 54) . Вычислим его через НОД(1 260, 54) , который также определим по алгоритму Евклида: 1 260=54·23+18 , 54=18·3 . Тогда НОД(1 260, 54)=18 , откуда НОК(1 260, 54)= 1 260·54:НОД(1 260, 54)= 1 260·54:18=3 780 . То есть, m 3 =3 780 .

Осталось найти m 4 =НОК(m 3 , a 4)=НОК(3 780, 250) . Для этого находим НОД(3 780, 250) по алгоритму Евклида: 3 780=250·15+30 , 250=30·8+10 , 30=10·3 . Следовательно, НОД(3 780, 250)=10 , откуда НОК(3 780, 250)= 3 780·250:НОД(3 780, 250)= 3 780·250:10=94 500 . То есть, m 4 =94 500 .

Таким образом, наименьшее общее кратное исходных четырех чисел равно 94 500 .

Ответ:

НОК(140, 9, 54, 250)=94 500 .

Во многих случаях наименьшее общее кратное трех и большего количества чисел удобно находить с использованием разложений данных чисел на простые множители. При этом следует придерживаться следующего правила. Наименьшее общее кратное нескольких чисел равно произведению, которое составляется так: ко всем множителям из разложения первого числа добавляются недостающие множители из разложения второго числа, к полученным множителям добавляются недостающие множители из разложения третьего числа и так далее .

Рассмотрим пример нахождения наименьшего общего кратного с использованием разложения чисел на простые множители.

Пример.

Найдите наименьшее общее кратное пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение.

Сначала получаем разложения данных чисел на простые множители: 84=2·2·3·7 , 6=2·3 , 48=2·2·2·2·3 , 7 (7 – простое число , оно совпадает со своим разложением на простые множители) и 143=11·13 .

Для нахождения НОК данных чисел к множителям первого числа 84 (ими являются 2 , 2 , 3 и 7 ) нужно добавить недостающие множители из разложения второго числа 6 . Разложение числа 6 не содержит недостающих множителей, так как и 2 и 3 уже присутствуют в разложении первого числа 84 . Дальше к множителям 2 , 2 , 3 и 7 добавляем недостающие множители 2 и 2 из разложения третьего числа 48 , получаем набор множителей 2 , 2 , 2 , 2 , 3 и 7 . К этому набору на следующем шаге не придется добавлять множителей, так как 7 уже содержится в нем. Наконец, к множителям 2 , 2 , 2 , 2 , 3 и 7 добавляем недостающие множители 11 и 13 из разложения числа 143 . Получаем произведение 2·2·2·2·3·7·11·13 , которое равно 48 048 .



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...