Классификация материалов для базисов съемных протезов. Результатов поиска для: пластмассы для базисов съемных зубных протезов. Сравнительная характеристика акриловых пластмасс для изготовления протезов

Основные требования к материалам для базисов съемных протезов. Состав и технология изготовления акрилового базиса. Классификация современных базисных материалов. Требования стандартов к физикомеханическим свойствам базисных материалов.

После того как был найден способ вулканизации каучука введением серы (Goodzhir Гуджир, 1839) и способ его применения в ортопедической стоматологии для изготовления базисов съемных протезов (Delabor, 1848, Petman, 1851), полимерные материалы стали незаменимыми для изготовления зубных протезов данного типа.

Хотя протезы из натурального каучука уже давно не изготавливаются, опыт, накопленный при работе с этим природным материалом в течение почти ста лет, позволил стоматологам и материаловедам сформулировать основные требования к базисным материалам. Материал для базисов съемных протезов должен:

Обладать биосовместимостью;

Легко очищаться и не требовать сложных процедур для соблюдения гигиены;

Иметь гладкую и плотную поверхность, не вызывающую раздражения подлежащих тканей полости рта, легко поддающуюся полированию;

Обладать устойчивостью по отношению к микробному загрязнению (устойчивость к росту бактерий);

Обеспечить точное прилегание к тканям протезного ложа;

Иметь низкое значение плотности, обеспечивая легкость протеза во рту;

Быть достаточно прочным, не разрушаться или деформироваться под нагрузками, действующими в полости рта;

Обладать термопроводностью;

Удовлетворять эстетическим требованиям;

Обеспечивать возможность проведения перебазировок и коррекций;

Иметь простую технологию изготовления и низкую стоимость.

С внедрением в стоматологическую практику 1935-1940 гг. акриловых полимеров ортопедическая стоматология получила наиболее приемлемый полимерный материал для изготовления съемных зубных протезов. Благодаря низкой относительной плотности, химической стойкости, удовлетворительной прочности, хорошим эстетическим свойствам и простоте технологии изготовления зубных протезов, акриловые пластмассы более 70 лет широко применяются в ортопедической стоматологии.

Зубные протезы из акриловых материалов изготавливают по технологии формования полимер-мономерной композиции или технологии «теста», согласно которой жидкий компонент (мономер, чаще всего метиловый эфир метакриловой кислоты или метилметакрилат), смешивается с порошкообразным компонентом (полимером). Мономер смачивает и пропитывает полимер до тестоподобной консистенции. Это тесто заформовывают или пакуют в гипсовую форму для изготовления протеза. Затем оно переходит в твердое состояние или отверждается в результате радикальной полимеризации, начало которой дает распад инициатора, пероксида бензоила, входящего в состав порошка, при нагревании тестообразной композиции (схема 13.1). Новые полимерные базисные материалы и новые технологии их применения расширили возможности получения первичного свободного радикала, добавив, например, способ светового отверждения.

Схема 13.1. Способы инициирования полимеризации при отверждении акриловых базисных материалов

Большинство акриловых базисных материалов, выпускаемых в настоящее время, перерабатывается по этой технологии и поступает в виде комплекта «порошок-жидкость». Первоначально порошок получали размалыванием блоков полиметилметакрилата (пмма). Однако вскоре было установлено, что более однородное по консистенции тесто можно получить при использовании в качестве порошка полимера, получаемого методом суспензионной полимеризации. Этот метод позволяет получить материал сразу в виде порошка, частицы которого имеют правильную сферическую форму. Промышленность обычно выпускает смесь порошков акриловых полимеров или сополимеров, имеющую довольно широкое распределение по молекулярной массе, со средней молекулярной массой порядка одного миллиона.

Свойства базисного материала зависят от распределения размера частиц суспензионного порошка, состава (со)полимера, его молекулярно-массового распределения и содержания пластификатора. Повышение молекулярной массы полимерного порошка и снижение до минимально возможного количества пластификатора улучшают физические и механические свойства базисного материала, однако могут отрицательно сказаться на технологических свойствах полимер-мономерного теста.

Акриловые базисные материалы - пример оригинальной композиции, которая в окончательном отвержденном виде представляет собой сочетание «старого» полимера (суспензионного порошка) и «нового» полимера, образованного при полимеризации полимер-мономерной композиции или теста в процессе изготовления готового изделия - базиса зубного протеза.

В большинстве случаев мономер, используемый для образования теста, тот же, что и мономер для изготовления самого порошка, однако часто в него вводят дополнительные модифицирующие вещества, например, бифункциональные мономеры или олигомеры, которые называют сшивающими агентами, позволяющими создать сетчатую сшитую структуру «нового» полимера. Присутствующий в составе мономерной жидкости сшивающий агент способствует повышению молекулярной массы отвержденного материала и придает ему два полезных свойства. Он уменьшает растворимость базиса в органических растворителях и повышает его прочность, а именно, стойкость к трещинообразованию под нагрузкой. Избыточное количество сшивающего агента может повысить хрупкость базиса протеза. Самыми распространенными сшива-

ющими агентами являются диметакрилаты, например диметакриловый эфир этиленгликоля (ДМЭГ), диметакриловый эфир триэтиленгликоля (ТГМ-3). Для предотвращения преждевременной полимеризации мономеров при хранении и транспортировке в мономер вводят небольшие количества ингибиторов. Действие ингибиторов эффективно проявляется уже при содержании их в сотых долях процента в расчете на мономер. В присутствии ингибиторов (гидрохинон, дифенилолпропан) скорость процесса полимеризации снижается, а полимер получается с меньшей молекулярной массой.

Многолетние клинические наблюдения акриловых базисных материалов вскрыли их существенные недостатки, главный из которых - присутствие в отвержденном базисе остаточных мономеров, ухудшающих его биосовместимость, понижающих прочность материала, приводящую к поломкам протезов в ряде случаев.

Можно выделить основные направления исследований по совершенствованию базисных материалов:

Модификация состава акриловых базисных материалов путем введения вновь синтезированных мономеров для сополимеризации при получении суспензионного порошка, в качестве сшивающих агентов в жидкость и других добавок;

Привлечение полимерных материалов других классов, например литьевых термопластов с полным отказом от технологии акриловых полимер-мономерных композиций и исключения «остаточного мономера»;

Создание новых материалов и технологий для формования и отверждения полимерных базисных материалов.

Разработки, направленные на совершенствование материалов для базисов зубных протезов, привели к созданию новых материалов, и в настоящее время международный стандарт ИСО? 1567 и разработанный на его основе ГОСТ Р 51889-2002 содержат расширенную классификацию этих материалов (схема 13.2).

Независимо от типа базисных материалов определенные требования, продиктованные назначением, предъявляются к их физико-механическим свойствам. Современные стандарты базисных материалов на полимерной основе содержат следующие основные нормы для показателей, характеризующих качество акриловых материалов горячего отверждения: прочность при изгибе ≥65 МПа, модуль упругости при изгибе ≥2000 МПа, водопоглощение ≤30 мкг /мм 3 . Базисный материал не

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и касается материала для изготовления пластмассовых базисов съемных зубных протезов, обладающих антибактериальными свойствами. Предложен материал для базисов зубных протезов, состоящий из акриловых полимеров, содержащих 0,0005-0,03 мас.% наносеребра, равномерно распределенного по всему объему полимера. Введение в состав пластмасс нанодисперсного серебра в указанных количествах исключает снижение эстетических свойств зубных протезов и обеспечивает создание пролонгированного антимикробного эффекта как по всей поверхности изделия, так и в его объеме. Это продлевает срок службы зубных протезов и обеспечивает длительный антибактериальный эффект. 1 табл.

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и касается материала для изготовления полимерных (пластмассовых) базисов съемных зубных протезов, обладающих антибактериальными свойствами.

Более 12 миллионов человек в России пользуются зубными протезами, содержащими элементы, изготовленные из полимеров. При этом уже около 60 лет наиболее широко применяемыми полимерами (по критерию цена-качество) являются акриловые. Любое протезирование в той или иной степени (в зависимости от типа протезных материалов) изменяет баланс микрофлоры ротовой полости. Это вызвано ответной реакцией организма на внедрение чужеродных материалов в устоявшееся равновесие между полезной и условно патогенной флорой.

Под базисом протеза создается термостат с постоянной температурой, влажностью, нарушением самоочищения слизистой оболочки, пищевыми остатками, что способствует стремительному развитию микробной пленки. Так, в работе «Литьевым термопластам медицинской чистоты - дорогу в стоматологическую ортопедию», Э.Я. Варес, В.А. Нагурный и др., «Стоматология», 2004, № 6, с.53-54, отмечается, что после фиксации протезов из акриловых пластмасс во рту количество кишечной палочки увеличивается от 10 до 63%, дрожжеподобных грибов - от 10 до 34%, патогенного стафилококка - от 10 до 22%. До 22% возрастает также содержание энтерококка, который в норме не наблюдается. Ситуация с бактериальным заражением акриловых пластмасс и полости рта усугубляется в процессе пользования зубными протезами. Причиной этого, помимо термостатических свойств, является постоянное увеличение в пластмассе открытой микропористости, являющейся своего рода депо для патогенной микрофлоры. Глубина зараженного слоя пластмассы может достигать 2,0-2,5 мм. Из-за травматизации мягких тканей, прилегающих к протезному ложу, бактериальное и грибковое заражение приводит к возникновению кандидоза и других заболеваний. Акриловые полимеры колонизируются и пародонтопатогенными видами бактерий, такими как A.naeslundii, Prev.melaninogenica, K.nucleatum и S.intermedius. Поэтому при разлитом пародонтите протезирование с использованием пластмасс не способствует нормализации микрофлоры полости рта. Вообще зубные протезы из отечественных акриловых полимеров (пластмасс) необходимо менять через три года, импортных - через каждые пять лет, в частности, из-за колонизации их микроорганизмами.

Ситуация с бактериальным и грибковым заражением акриловых пластмасс, с уровнем этого заражения, к сожалению, не является общеизвестной. Поэтому дезинфекция пластмассовых зубных протезов специальными средствами проводится лишь незначительным количеством горожан и практически не осуществляется в сельской местности. Учитывая малые размеры образующихся микропор и их большую глубину, а также имеющий хорошую адгезию налет, фактически нереально провести санитарную обработку пластмассовых зубных протезов без использования дополнительного медикаментозного или ультразвукового воздействия. А это делает профилактику и борьбу с заражением акриловых пластмасс и, соответственно, здоровья организма еще более актуальной для россиян.

Бактерицидные свойства серебра и его соединений известны уже много столетий. За это время не было выявлено ни одного случая привыкания к нему патогенной флоры. Было установлено, что серебро в нанометрических размерах активнее хлора, хлорной извести, гипохлорита натрия и других сильных окислителей, в 1750 раз сильнее карболовой кислоты и в 3,5 раза - сулемы (в одинаковой концентрации). Оно уничтожает более чем 650 видов бактерий, вирусов и грибов [Кульский Л.А. Серебряная вода. 9-е изд., К.: Наук. Думка, 1987, 134 с.].

Один из методов предотвращения протетических стоматитов описан в патенте РФ 2287980, A61K 6/08, опубл. 27.11.2006, где в состав для фиксации съемных зубных протезов введен прополис, обладающий антибактериальным и иммунотропным действием. Недостатком этого технического решения является ограниченный как по срокам, так и по спектру бактерицидного действия положительный эффект.

Спектр антимикробного действия серебра значительно шире, чем у многих антибиотиков и сульфаниламидов, а бактерицидный эффект проявляется при минимальных (олигодинамических) дозах серебра. Важно отметить, что существует большое различие в токсичности серебра для патогенной флоры и для высших организмов. Оно достигает пяти-шести порядков. Поэтому концентрации серебра, вызывающие гибель бактерий, вирусов и грибов, абсолютно безвредны для человека и животных. Некоторые ученые считают, что серебро является микроэлементом, необходимым для нормальной жизнедеятельности многих внутренних органов, т.к. оно стимулирует деятельность иммунной системы.

Рассматривая лечебные свойства серебра, принципиально важно учитывать его агрегатное состояние. По степени возрастания бактериостатической активности препараты серебра (как и других металлов) можно ранжировать в следующем порядке: массивное, ионное, нанокристаллическое. В нанокристаллических размерах (менее 100 нм) вещества скачкообразно изменяют свои физические и химические свойства. Поэтому наиболее реальными и известными примерами коммерциализации в области нанотехнологий считаются целевые назначения в области жизнедеятельности человека. В настоящее время разработаны бактерицидные краски, обеспечивающие долговременную защиту поверхности от бактериального заражения. При этом следует отметить крайне малую концентрацию нанодисперсного серебра в краске (1,6-6,5×10 -4 % в пересчете на элементарное серебро), обеспечивающую биоцидный эффект [Е.М.Егорова, А.А.Ревина и др. Бактерицидные и каталитические свойства стабильных металлических наночастиц в обратных мицеллах. Вестн. Моск. Ун-та, сер.2. Химия, 2001, т.42, № 5, с.332-338].

Препараты на основе серебра довольно широко применяются в стоматологии. Например, в патенте РФ 2243775, A61K 33/38, опубл. 10.01.2005, азотнокислое серебро используется для лечения кариеса и стерилизации канала корня зуба. При химическом восстановлении азотнокислого серебра образуется мелкодисперсное серебро, обеспечивающее дезинфицирующее, лечебное действие. Недостатком, ограничивающим применение этого способа, является эстетический фактор - мелкодисперсное серебро имеет черный цвет.

Описан [пат. РФ 2354668, C08J 5/16, опубл. 10.05.2009] способ изготовления полимерных деталей трения скольжения для искусственных эндопротезов, состоящих из высокомолекулярного полиэтилена с равномерно введенными наночастицами золота или золота и серебра в количестве 0,15-0,5 мас.%. Недостатком этого способа также является то, что серебро в таких количествах придает неэстетичный вид протезам. Кроме того, полиэтилен имеет свои недостатки при его применении в протезировании зубов.

В составе твердеющей пасты для пломбирования каналов "SEALITE REGULAR, ULTRA" фирмы "Пьер Ролан" также используется серебров больших количествах - до 24%. Это решение нельзя использовать для пластмассовых зубных протезов из-за низких эстетических свойств материала и малой бактерицидной активности грубодисперсных порошков серебра [Кузьмина Л.Н., Звиденцова Н.С., Колесников Л.В. Получение наночастиц серебра методом химического восстановления. Материалы Международной конференции «Физико-химические процессы в неорганических материалах» (ФХП-10) Кемерово: Кузбассвузиздат. 2007. Т.2. С.321-324].

Известен материал [Курляндский В.Ю., Ященко П.М. и др. Актуальные вопросы ортопедической стоматологии. М., 1968, с.140] пластмассовых протезов, обладающий антибактериальным эффектом, полученный путем химического серебрения внутренней поверхности пластмассы. Эффект от такого нанесения также описан [Л.Д.Гожая, Я.Т.Назаров и др. Поступление серебра в слюну у лиц, пользующихся металлизированными пластмассовыми протезами. Стоматология, 1980, № 1, с.41-43]. Химическое серебрение поверхности пластмассового протеза осуществляют химическим восстановлением серебра из его соединений. Для проведения реакции обычно используют нитрат серебра или его аммиачную комплексную соль. После химического серебрения внутренней поверхности акрилового протеза исчезают неприятные ощущения во рту, происходит заживление пораженной слизистой оболочки полости рта. В результате применения такого решения достигается требуемый технический результат- антимикробное действие в полости рта.

Недостатком такого материала является кратковременный терапевтический эффект при хронических заболеваниях полости рта и зева. Это вызвано тем, что нанесенное на внутреннюю поверхность пластмассового протеза серебро вымывается с нее в течение 2-3 недель. При этом наибольшее количество серебра поступает в организм человека в первые 3 суток. Вымывание серебра происходит в результате как его «механического» вымывания, так и растворения. Для пролонгирования лечебного действия серебряного покрытия требуется каждые трое суток проводить новую металлизацию небной поверхности акрилатных протезов . Вторым недостатком такого материала является невозможность предотвращения бактериального заражения пластмассы на наружных поверхностях протезов (на которые из соображений эстетики серебро не наносят) и внутри массы материала. Кроме того, следует учитывать относительно низкую бактерицидную активность серебряных монолитных покрытий по сравнению с нанодисперсным серебром.

Задачей настоящего изобретения является разработка антибактериального материала для базисов съемных зубных протезов, обеспечивающего долговременное поверхностное и объемное антибактериальное действие.

Задача решается за счет введения в состав пластмасс для базисов зубных протезов нанодисперсного серебра в количествах, не снижающих эстетические свойства зубных протезов и одновременно обеспечивающих создание антибактериального эффекта в базисах зубных протезов. Нанодисперсное серебро вводят в исходные микропорошки акрилатных полимеров любыми физическими или химическими методами.

Сущность изобретения состоит в том, что предложен материал с антибактериальным эффектом для базисов зубных протезов, отличающийся тем, что он состоит из акриловых полимеров, содержащих 0,0005-0,03 мас.% наносеребра, распределенного по всему объему полимера.

Разработанный материал содержит наносеребро, равномерно распределенное по всему объему полимера. Это достигается путем нанесения наносеребра на микропорошки акрилатов любыми физическими способами (анодное растворение серебра, осаждение из паровой фазы, смешивание с готовой седиментационно-устойчивой суспензией наносеребра) или химическими способами (химическое, биохимическое, радиационно-химическое восстановление соединений серебра) с последующим их замешиванием в жидком мономере. Мономер растворяет акрилатные порошки и вследствие малого размера частиц наносеребро равномерно распределяется в порошках, а затем и по всему объему готового пластмассового теста. В процессе эксплуатации протезов, изготовленных по предлагаемому решению, происходит постоянное микрорастворение пластмассы в слюне (образование микропористости). При этом обнажаются все новые и новые активные наночастицы серебра в глубине микропор, препятствуя колонизации патогенной флорой. Этим обеспечиваются пролонгированное и надежное антибактериальное действие материала базиса зубных протезов без использования специальных мер гигиены, продление срока службы протезов и общий оздоровительный эффект на организм человека.

Использование серебра в нанометрических размерах (наносеребро) и его равномерное распределение в объеме полимера позволяет получить надежное пролонгированное антибактериальное действие при существенно более низких концентрациях серебра по сравнению с другими его формами и при этом сохранить эстетические качества протезов.

Для оценки возможности осуществления заявленного изобретения с реализацией поставленных задач для нанесения наносеребра на порошки акрилатов (как частный пример) использовали порошок промышленно выпускаемого препарата «Повиаргол», содержащего 8 мас.% наносеребра.

Из общей теории модифицирования поверхности любых микропорошков известно, что с уменьшением количества вводимой добавки до долей процента ее не удается равномерно распределить в основном порошке только за счет перемешивания или совместного помола, когда оба компонента находятся в порошкообразном виде. Одним из выходов является использование микродобавки в виде раствора малой концентрации модификатора [Черепанов A.M., Тресвятский С.Г. Высокоогнеупорные материалы и изделия из окислов. М., Металлургия, 1964. - 400 с]. Учитывая это, порошок «Повиаргола» растворяли в воде до 1% раствора в условиях ультразвукового воздействия с рабочей частотой 22 кГц. В водном растворе «Повиаргола» средний размер первичных кластерных частиц серебра составляет 5-10 нанометров.

После этого раствор «Повиаргола», в расчетных количествах, вливали в порошок акрилатной пластмассы «Фторакс». Равномерно увлажненный модифицирующим раствором порошок высушивали до воздушно-сухого состояния при постоянном перемешивании. При этом на поверхности микропорошков «Фторакс» равномерно фиксировалось (осаждалось) наносеребро. Формовочную массу готовили, смешивая модифицированный акрилатный порошок с мономером. После растворения этих порошков в мономере проводили формование дисков диаметром 20 мм для проведения микробиологических исследований и оценки цвета. При перемешивании этих модифицированных акрилатных порошков с жидкостью акрилатного мономера (растворитель и отвердитель акрилатов) наносеребро равномерно распределяется по всему объему формовочной массы. При эксплуатации протезов, изготовленных из материала по данному изобретению, происходят обычная деструкция пластмассы ротовой жидкостью и постоянными знакопеременными нагрузками (образование микропористости, растрескивание) и постоянное обнажение наночастиц серебра в порах пластмассы. Этим обеспечиваются пролонгированное и надежное антибактериальное действие даже без использования специальных мер гигиены, продление срока службы протезов и общее оздоровительное воздействие на организм человека.

Заявляемые количества наносеребра определяются по двум параметрам: эстетическому параметру и антибактериальному эффекту. Оказалось, что при содержании наносеребра более 0,03 мас.% цвет пластмассы приобретает коричневый оттенок, что не удовлетворяет эстетическим требованиям, предъявляемым к съемным зубным протезам. В частности, материал, имеющий такой цвет, не может использоваться в переднем отделе зубного ряда. Таким образом, верхний предел содержания наносеребра для изготовления базисов зубных протезов ограничивается 0,03 мас.%. При содержании серебра менее 0,0005 мас.% действие серебра оказывается недостаточным для оказания заметного антибактериального воздействия.

В качестве контроля готовили диски из формовочной массы без добавления наносеребра. Оценку антибактериальной активности дисков проводили чашечно-суспензионным методом in vitro в соответствии с методикой, изложенной в MP № 2003/17 от 19.03.2004 «Чашечный метод оценки эффективности дезинфектантов и антисептиков». В качестве тест-культуры использовали тест-штамм S. aureus 6538 с микробной нагрузкой 10 3 КОЕ/мл. Экспозиция составила 24 часа.

ПРИМЕРЫ ВЫПОЛНЕНИЯ

Готовят материал с содержанием наносеребра 0,0005 мас.%.

Для этого готовят 1% раствор «Повиаргола» в дистиллированной воде в условиях ультразвукового воздействия с рабочей частотой 22 кГц, разбавляют его дистиллированной водой в 10 раз. 1,9 мл полученного раствора «Повиаргола» растворяют в 2 мл дистиллированной воды (для обеспечения полного смачивания акрилатного порошка) и вливают в навеску 20 г акрилатного порошка «Фторакс». Количество введенного наносеребра в порошок акрилата при этом равняется 0,15 мг. Массу высушивают при постоянном перемешивании в фарфоровой ступке до воздушно-сухого состояния. Формовочную массу готовят, смешивая модифицированный серебром порошок с жидким мономером. Соотношение порошок:мономер составляет 2 мас.ч. порошка на 1 мас.ч. мономера. После растворения порошков «Фторакс» в мономере проводят формование дисков диаметром 20 мм для проведения микробиологических исследований.

Готовят материал с содержанием наносеребра 0,01 мас.% (рабочий состав).

Для этого готовят 1% раствор «Повиаргола» в дистиллированной воде в условиях ультразвукового воздействия с рабочей частотой 22 кГц, и 3,8 мл полученного раствора «Повиаргола» вливают в навеску 20 г акрилатного порошка «Фторакс». Количество введенного наносеребра в порошок акрилата при этом равняется 3 мг.

Цвет пластмассы имеет розовый оттенок, что удовлетворяет эстетическим требованиям.

Материал с содержанием наносеребра 0,0001 мас.% (ниже минимального) готовят по методике, описанной в Примере 1, но количество раствора «Повиаргола» составляет 0,38 мл. Количество введенного наносеребра при этом равняется 0,03 мг.

Микробиологические испытания показали отсутствие антибактериального (бактериостатического) эффекта.

Цвет пластмассы имеет розовый оттенок, что удовлетворяет эстетическим требованиям.

Готовят материал с содержанием наносеребра 0,04 мас.% (выше максимальной концентрации).

Для этого готовят 3% раствор «Повиаргола» в дистиллированной воде в условиях ультразвукового воздействия с рабочей частотой 22 кГц и 3,8 мл полученного раствора «Повиаргола» вливают в навеску 20 г акрилатного порошка «Фторакс». Количество введенного наносеребра в порошок акрилата при этом равняется 12 мг.

Массу высушивают при постоянном перемешивании в фарфоровой ступке до воздушно-сухого состояния. Формовочную массу готовят, смешивая порошок с жидким мономером. Соотношение порошок:мономер составляет 2 мас.ч. порошка на 1 мас.ч. мономера. После растворения порошка «Фторакс» в мономере проводят формование дисков диаметром 20 мм для проведения микробиологических исследований.

Микробиологические испытания показали сильный бактерицидный эффект.

Цвет пластмассы имеет коричневый оттенок и не удовлетворяет эстетическим требованиям, предъявляемым к материалу для базисов съемных зубных протезов.

Микробиологические испытания показали, что 0,0001 мас.% наносеребра не оказывают антибактериального действия в отношении стафилококка золотистого; 0,0005 мас.% наносеребра снижают уровень микробной популяции в 100 раз; 0,01 мас.% наносеребра - в 150 раз; 0,03 мас.% наносеребра - в 1000 раз; 0,04 мас.% наносеребра снижают уровень микробной популяции более чем в 1000 раз.

При этом в исследованиях показано, что диски с наносеребром обладают выраженным пролонгированным антибактериальным эффектом. Вытяжки из одного и того же диска получали каждые 2 недели, их термостатировали по методу «ускоренного старения» (И-42-2-82. «Временная инструкция по проведению работ с целью определения сроков годности лекарственных средств на основе метода «ускоренного старения» при повышенной температуре») с последующим высеванием по вышеуказанной методике на чашки, засеянные газоном тест-культуры стафилококка.

Как показано в таблице, вытяжки из дисков с содержанием наносеребра от 0,0005 до 0,03 мас.% проявляют антибактериальное действие, которое сохраняется в течение 250 суток.

Содержание наносеребра, мас.% Цвет Антибактериальный эффект
0,0001 Розовый оттенок Отсутствие антибактериального эффекта
0,0005 Розовый оттенок Эффект 250 суток
0,01 Розовый оттенок Эффект 250 суток
0,03 Розовый оттенок Эффект 250 суток
0,04% Коричневый оттенок Эффект 250 суток

Таким образом, материал по изобретению обладает ярко выраженным пролонгированным антибактериальным эффектом как по всей поверхности изделия, так и в его объеме. Это продлевает срок службы зубных протезов и обеспечивает длительный антибактериальный эффект.

Предлагаемое изобретение отличается от известных тем, что разработан материал для базисов зубных протезов на основе акриловых полимеров, содержащий распределенное во всей его массе нанодисперсное серебро, имеющий эстетичный вид, обладающее выраженным пролонгированным антибактериальным эффектом.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Антибактериальный материал для базисов съемных зубных протезов на основе акриловых полимеров, отличающийся тем, что он содержит 0,0005-0,03 мас.% наносеребра, равномерно распределенного в полимере.

ВВЕДЕНИЕ.

Согласно прогнозам старения населения Западных стран к 2025 году более половины его составят люди старше 50 лет. Несмотря на достижения в профилактике стоматологических заболеваний, вероятно, что многим из этих людей для замещения утраченных зубов потребуются съемные, полные или частичные, зубные протезы. В настоящее время около 32 миллионов жителей Северной Америки носят такие протезы, ежегодно для протезирования пациентов изготавливается 9 миллионов полных съемных и 4,5 миллиона частичных зубных протезов. Этим пациентам важно, чтобы их обеспечили эстетичными и высоко функциональными протезами, поскольку это улучшит качество их жизни.

Изготовление съемного протеза состоит из многих этапов. Первый из них - снятие оттиска, после которого следует ряд технологических этапов в зуботехнической лаборатории. К ним относится получение модели, постановка зубов, изготовление восковой модели, изготовление гипсовой формы в зуботехнической кювете и удаление, вываривание, воска, а затем заполнение полученного пространства формы материалом для изготовления базисов зубных протезов или базисным материалом.

Для изготовления протезов использовалось множество материалов, включая материалы на основе целлюлозы, фенолформальдегида, виниловых пластмасс и эбонита. Тем не менее, все они имели различные недостатки:.

Материалы на основе производных целлюлозы деформировались в полости рта, имели привкус камфары, которая использовалась в качестве пластификатора. Камфара выделялась из протеза, вызывая образование пятен и пузырьков в базисе, а также изменение цвета протеза в течение нескольких месяцев.

Фенолформальдегидная пластмасса (бакелит) оказалась очень трудным в работе нетехнологичным материалом, и она также изменяла цвет в полости рта.

Виниловые пластмассы имели низкую прочность, переломы были обычным явлением, возможно, из-за усталости базисного материала.

Эбонит был первым материалом, который использовался для массового изготовления протезов, но его эстетические свойства были не слишком хороши, поэтому на смену ему пришли акриловые пластмассы.

Акриловая пластмасса (на основе полиметилметакрилата) в настоящее время является одним из широко используемых базисных материалов, поскольку имеет неплохие эстетические свойства, этот материал дешев и прост в работе. Но и акриловая пластмасса не является идеальным во всех отношениях материалом, так как не в полной мере отвечает требованиям к идеальному материалу для базиса зубного протеза, представленных в Таблице 3.2.1.

Но акриловые пластмассы получили широкое распространение, поскольку многим требованиям Таблицы 3.2.1. они отвечают. В частности, технология изготовления протезов из акриловой пластмассы достаточно простая и недорогая, протезы имеют хороший внешний вид. Помимо применения в полных съемных протезах акриловую пластмассу часто применяют и для других целей, таких как изготовление индивидуальных ложек для снятия оттисков, для воспроизведения рельефа мягких тканей на литых металлических каркасах, для починки протезов, изготовления мягких подкладок к базисам протезов и искусственных зубов.

Акриловые материалы холодного отверждения. Классификация эластичных базисных материалов. Сравнительная оценка полимерных материалов для искусственных зубов с материалами другой химической природы.

Акриловые пластмассы холодного отверждения представляют собой композиции, самопроизвольно, т.е. без дополнительной внешней энергии нагревания или света, отверждающиеся при комнатной температуре. Полимеризат в зависимости от состава материала может быть твердым или эластичным. Пластмассы холодного отверждения используются в стоматологии для исправления (перебазирования) зубных протезов, починки протезов, изготовления временных протезов, шин при пародонтозе, моделей и др. Преимуществом этих материалов перед акриловыми материалами горячего отверждения является более простая технология. Вместе с тем у них есть недостатки: они уступают по прочности материалам горячего отверждения, в них остается больше незаполимеризованных или остаточных мономеров. Согласно требованиям современных стандартов, учитывающих реальные возможности материалов холодного отверждения, прочность их при изгибе должна быть не менее 60 МПа, модуль упругости при изгибе - не менее 1500 МПа, а количество остаточного мономера, которое признается допустимым, должно составлять не более 4,5% масс. (сравните с нормами стандартов для акриловых материалов горячего отверждения, лекция 13).

Состав пластмасс холодного отверждения отличается от пластмасс горячего отверждения тем, что в полимерный порошок в ходе синтеза вводят большее количество инициатора (около 1,5% вместо 0,5% для материалов горячего отверждения), а в жидкость добавляют активатор.

Необходимость повышения адгезии протеза к слизистой оболочке полости рта привела к появлению мягких эластичных подкладочных материалов для базисов съемных зубных протезов. Повышенная эластичность необходима также потому, что некоторые пациенты не могут пользоваться съемными зубными протезами с твердыми базисами из-за боли. К материалам для эластичных подкладок предъявляются следующие медико-технические требования:

1) биосовместимость;

2) прочное соединение с материалом жесткого базиса;

3) постоянство эластичности;

4) хорошая смачиваемость слюной;

5) низкое водопоглощение и низкая степень растворимости (дезинтеграции) в жидкостях полости рта;

6) высокая износоустойчивость;

7) гигиеничность, т.е. способность легко очищаться доступными средствами;

8) цветостойкость;

9) технологичность.

Материалы для эластичных подкладок к базисам протезов классифицируют в зависимости от природы материала и от условий полимеризации или отверждения (схема 14.1).

Схема 14.1.

Виды эластичных базисных материалов

Ранее в качестве эластичных базисных материалов применяли пластифицированный поливинилхлорид и сополимеры винилхлорида.

Временные эластичные подкладки, или тканевые кондиционеры, используются во рту в течение короткого периода, около нескольких недель, хотя известны некоторые удачные составы, которые сохраняют эластичность и удерживаются на поверхности базиса многие месяцы. Для этих материалов характерны специфические свойства, принципиально важные для их назначения. Одно из них - способность к вязкоэластичному течению под действием жевательных и других функциональных нагрузок, например, во время разговора. Таким образом, отечная слизистая оболочка, травмированная болезненной фиксацией старого протеза, получает возможность восстановиться, в то время как подкладка-кондиционер приспосабливается к любому рельефу. Современные материалы данного назначения - это преимущественно акриловые гели.

Назначение искусственных зубов заключается главным образом в обеспечении функции жевательного аппарата и улучшении речи. Другой важный аспект - восстановление зубного ряда в эстетическом отношении. Основным критерием качества искусственных зубов является их сходство с естественными как по внешнему виду, так и по жевательной эффективности.

В настоящее время полимерные материалы занимают ведущее положение среди материалов другой химической природы для изготовления искусственных зубов. Кроме полимеров или пластмасс применяют фарфор и ограниченно металлические сплавы. Основные требования к искусственным зубам:

прочность и достаточная износостойкость (устойчивость к истиранию);

влагостойкость и устойчивость по отношению к действию ротовых жидкостей, отсутствие пористости;

прочное соединение с материалом базиса съемных протезов;

близость термофизических свойств (коэффициента термического расширения) к свойствам базиса;

соответствие по форме и цвету естественным зубам, сохранение первоначального цвета в условиях функционирования протеза длительное время (цветостойкость);

способность легко обрабатываться и полироваться.

Хотя были попытки изготавливать искусственные зубы из различных полимеров, поликарбонатов, полиэфиров и других материалов, обладающих более высокой, чем акрилаты прочностью, лучшие результаты по цветовоспроизведению и прочности соединения с базисом давали все-таки акриловые материалы. Акриловые искусственные зубы изготавливали из сополимеров метилметакрилата и других мономеров акрилового ряда, имеющих пространственную сшитую структуру. В качестве бифункциональных мономеров или сшивающих агентов применяли диметакриловый эфир этиленгликоля (ДМЭГ), диметакриловый эфир триэтилен-гликоля (ТГМ-3), олигокарбонатдиметакрилат и др. Количество сшивающего агента, вводимого в состав сополимера, составляло 5-10% масс. по отношению к мономерам, используемым для приготовления полимер-мономерной акриловой композиции, из которой прессовали искусственные зубы. Такая структура полимерного материала придавала искусственным зубам повышенную твердость и теплостойкость, а также повышенную износостойкость. Повышение содержания сшивающего агента в композиции свыше 10% масс. приводило к снижению прочности связи между искусственными зубами и акриловым материалом базиса.

Фарфоровые искусственные зубы получают в результате обжига формовочной массы, приготовленной из полевого шпата, кварца, каолина и добавок. Все компоненты предварительно мелят, шихту слегка увлажняют (до 1%) и плотно пакуют в шамотные сосуды-капсулы, которые нагревают в печи при температуре 1350 °С в течение 20 ч. Полученную фритту размалывают и смешивают с пигментами. Из помолотой фритты готовят формовочную массу с добавлением пластифицирующих добавок водных растворов крахмала, масел и целлюлозы. Такую массу формуют в специальных металлических прессформах, включающую специальные конструктивные элементы для механического крепления с акриловым базисом съемного протеза (крампоны - металлические штифтики либо полости и каналы).

Металлические искусственные зубы из нержавеющей стали продолжают выпускать в нашей стране, хотя в ограниченном количестве. Постепенно их вытесняют искусственные зубы из пластмассы и фарфора, так как металлические зубы не соответствуют эстетическим требованиям и по своим теплофизическим характеристикам сильно отличаются от тканей натуральных зубов и полимерного материала базиса протеза.

При сравнении искусственных зубов из пластмассы и фарфора можно выделить преимущества и недостатки, связанные с химической природой этих материалов. Фарфоровые зубы отличаются более высокой биосовместимостью, цветостабильностью и износостойкостью, однако технология их изготовления более сложна, они не способны адгезионно соединяться с акриловым базисом, у них более высокий удельный вес, и при жевании зубные протезы с фарфоровыми зубами издают неестественный стук.

Искусственные зубы выпускают наборами, гарнитурами, различающимися фасонами и размерами. Каждая фирма-производитель представляет карту или альбом фасонов и размеров выпускаемых зубов. В большинстве случаев в нее включены фасоны передних (фронтальных) и боковых (жевательных) зубов, разделенных на несколько групп. В каждой группе гарнитуры передних зубов имеют одинаковую ширину и различаются по высоте и типам. Высота (h) определяется по высоте коронки верхнего центрального резца, ширина (а) - по ширине гарнитура верхних передних зубов. Фронтальные зубы различаются по форме. Их изготавливают трех типов: прямоугольные, овальные и клиновидные. Причем это различие соблюдается только для верхних передних зубов, а нижние зубы изготавливают одного усредненного типа.

Искусственные зубы различаются также цветовыми оттенками дентиновой и эмалевой частей, которые в определенном сочетании составляют цвет искусственного зуба. Различают двухцветные и трехцветные искусственные зубы. Последние наиболее полно соответствуют

внешнему виду натуральных зубов. Цвета искусственных зубов маркируют по определенной цветовой шкале или стандартной расцветке, чаще всего по расцветке VITA.

ЛЕКЦИЯ 15 ВСПОМОГАТЕЛЬНЫЕ МАТЕРИАЛЫ В ОРТОПЕДИЧЕСКОЙ СТОМАТОЛОГИИ. СТОМАТОЛОГИЧЕСКИЙ ГИПС

Технологическая схема изготовления зубных протезов. Краткая характеристика вспомогательных материалов. Состав, свойства и процесс твердения стоматологического гипса.

В ранние годы становления стоматологии изготовление зубных протезов было достаточно редким явлением и требовало необыкновенного искусства. Зубные протезы изготавливали приблизительно, «на глазок», многократной примеркой во рту. Лишь в 1721 г. городской врач Бреславля Готфрид Пурман предложил предварительно снимать оттиск с челюстей, чтобы пользоваться им при изготовлении искусственных зубов. Оттиском называется негативное отображение формы твердых и мягких тканей полости рта, полученное с помощью специальных оттискных материалов*.

Изготовлять по оттиску гипсовую модель первым предложил Пфафф (Pfaff). Начало использования оттискных материалов и моделей-позитивов послужило отправной точкой создания технологии изготовления зубных протезов, весьма сложных и точных конструкций для восстановления зубов и зубочелюстной системы. Хотя за прошедшие несколько сотен лет технология изготовления зубных протезов и их конструкции значительно изменилась и дополнилась новыми материалами и аппаратами, общая технологическая схема в основном сохранилась (схема 15.1).

Процесс создания зубного протеза любого вида и конструкции начинается со снятия оттиска - негативного отображения твердых и мягких

* Оттиск-отпечаток, след чего-либо, получаемый надавливанием. Слепок - точная копия какого-либо предмета, произведения скульптуры и т.п., отлитая (обычно из гипса) в форме, которая снята с оригинала (Словарь русского языка. Том III, IV, изд. 3-е, М., Русский язык,

Схема 15.1.

Этапы изготовления зубных протезов и вспомогательные материалы для каждого этапа

тканей рта пациента. Снятие оттиска производит врач-стоматолог на приеме пациента в ортопедической клинике. По полученному оттиску изготавливают диагностические и рабочие модели из гипса. Рабочая или мастер-модель служит для изготовления на ней зубного протеза.

Сначала протез изготавливается из временных материалов, так называемых моделировочных материалов, главным представителем которых является воск, точнее различные восковые композиции. На следующем этапе воск заменяют основным восстановительным материалом, пластмассой, керамикой, металлическим сплавом. Замену осуществляют после изготовления формы, для которой применяют обычный медицинский гипс или специальные формовочные материалы, в которых также может использоваться гипс. После замещения воска в модели зубного протеза на постоянный основной восстановительный материал готовый протез извлекают из формы, очищают от остатков формовочного материала, шлифуют и полируют. Таким образом, основные этапы технологии изготовления зубных протезов включают применение как минимум пяти видов вспомогательных материалов.

Конечно, технология изготовления зубных протезов представлена здесь в самом общем виде. Однако этого достаточно, чтобы отметить -

основным качеством, которым должны обладать вспомогательные материалы, является их способность точно воспроизводить форму и размеры тканей полости рта и конструкции зубных протезов, возмещающие отсутствующие элементы зубочелюстной системы. Такой способностью обладает гипс, вспомогательный материал, который применяют на нескольких этапах изготовления зубных протезов как клинических, так и лабораторных.

Гипс занимает ведущее место в классе вспомогательных материалов для ортопедической стоматологии. Из гипса можно получить точный оттиск (правда, в настоящее время используют более современные оттискные материалы). Он дает точную копию твердых и мягких тканей полости рта - модель. Из гипса же готовят формы для замещения временных моделировочных материалов на основные конструкционные. Также гипс входит в некоторые формовочные материалы для литья зубных протезов из металлических сплавов (рис. 15.1).

Рис. 15.1.

применения гипса в качестве вспомогательного материала

Под термином «гипс» или «гипсовые материалы» понимают различные модификации сульфата кальция, водные или безводные, получаемые из сульфата кальция, который встречается в природе в виде минерала белого, серого или желтоватого цвета, химическая формула

которого представляет собой двухводный сульфат кальция. Гипс - это типичная осадочная порода, образование которой произошло выпадением в осадок сульфатных солей из растворов, обогащенных ими, в озерах и лагунах. Встречаются также залежи гипса, возникшие при выветривании горных пород.

Стоматологические (зуботехнические) гипсы получают прогреванием или термообработкой природного гипса, при этом в зависимости от условий термообработки получают различные его модификации. Двухводный сульфат кальция превращается в полуводный или полугидрат. Именно он является основным гипсовым продуктом, который применяется в качестве вспомогательного материала в ортопедической стоматологии. Стандарты выделяют 5 типов гипса стоматологического назначения (схема 15.2).

Схема 15.2.

Классификация стоматологического гипса

Готовый зуботехнический гипс (первых трех типов, см. схему 15.2) имеет следующий состав (в массовых %): полугидрат сульфата кальция - не менее 90%, двугидрат сульфата кальция - 2-4%, примеси процесса термообработки (безводный сульфат кальция - ангидрит и др.) - 6%.

При смешивании порошка полугидрата с водой в определенном соотношении вода/порошок образуется густое тесто. Процесс твердения описывается реакцией:

Полугидрат растворяется и взаимодействует с водой по представленной выше реакции. С образованием двугидрата сульфата, растворимость которого ниже, чем полугидрата сульфата кальция (2,05 г/л и 6,5 г/л соответственно), водная фаза становится перенасыщена им, что приводит к его кристаллизации на имеющихся в суспензии центрах. Обычно гипсовые кристаллы имеют игольчатую форму, часто располагаются в радиальном направлении от центра кристаллизации в виде сферических агрегатов. Центрами кристаллизации могут быть примеси (например, остатки частиц гипса). Последующее обеднение водной фазы ионами кальция и сульфата приводит к увеличению количества полугидрата, переходящего в раствор, и, в свою очередь, осаждающегося в виде двугидрата сульфата кальция.

Процесс твердения гипса продолжается от начала смешивания порошка с водой до завершения реакции твердения, когда материал достигает своей оптимальной прочности во влажном состоянии. Можно выделить четыре стадии твердения гипса: текучую, пластичную, рыхлую и твердую.

Реакция твердения на начальной стадии вызывает уменьшение объема гипсовой смеси. При соответствующих условиях эти изменения можно непосредственно наблюдать на ранних стадиях процесса твердения, когда смесь еще жидкая. Однако когда в смеси начинает нарастать твердость и жесткость (в этот момент исчезает блеск поверхности), можно наблюдать явление изотропного расширения в результате роста кристаллов гипса.

Строго говоря, скорость гидратации во время твердения не зависит от соотношения вода/порошок (В/П) в достаточно широких пределах. Однако скорость, с которой протекают связанные с ней и описанные выше физические процессы, во многом зависит от этого соотношения, поскольку эти процессы связаны с взаимодействием в суспензии растущих из центров кристаллов гипса. Густые смеси (при низком соотношении В/П) твердеют быстрее, заметно ускоряется расширение из-за более высокой концентрации в них центров кристаллизации.

Многие соли и коллоиды способны влиять на характер твердения гипсов, изменяя скорость реакции твердения. В течение многих лет их широко использовали при разработке составов стоматологических гипсов различного назначения, в основном эмпирическим способом, так

как принципы их влияния не были до конца понятны. Сам тонкий порошок гипса является хорошим ускорителем твердения, он ускоряет кристаллообразование в гетерогенной системе. Растворимые сульфаты и хлориды (сульфаты натрия и калия, хлорид натрия) в низких концентрациях тоже являются эффективными ускорителями, очевидно повышая скорость растворения полугидрата. Однако эти же соли в более высоких концентрациях (выше 1-2%) действуют как замедлители твердения, так как в процессе твердения уменьшается количество несвязанной воды в смеси и соответственно повышается концентрация добавок.

ЛЕКЦИЯ 16 КЛАССИФИКАЦИЯ И ОБЩАЯ ХАРАКТЕРИСТИКА ОТТИСКНЫХ МАТЕРИАЛОВ. ТВЕРДЫЕ ОТТИСКНЫЕ МАТЕРИАЛЫ

Требования к свойствам оттискных материалов. Классификация оттискных материалов. Твердые оттискные материалы - термопластичные компаунды и цинк- оксид-эвгенольные материалы.

К оттискным материалам предъявляются следующие требования:

1. Биоинертность, а именно отсутствие токсического воздействия, а также отсутствие значительных термических воздействий, вызванных процессами перехода материала из пластичного состояния в стабильное твердое или эластичное. Отсутствие неприятного вкуса и запаха. Способность оттиска подвергаться дезинфекции.

2. Пластичность или текучесть материала (соответствующая консистенция) при его введении и во время непосредственно снятия оттиска.

3. Размерная точность: минимальная усадка при твердении (отверждении) материала; точное воспроизведение рельефа и микрорельефа тканей полости рта, мягких и твердых; отсутствие постоянной или пластической деформации при выведении готового оттиска из полости рта.

4. Прочность и эластичность оттискного материала, позволяющие вывести оттиск из полости рта без повреждений.

5. Достаточное рабочее время и короткое время твердения/отверждения материала.

6. Отсутствие взаимодействия между оттискным материалом (в отвержденном состоянии) и модельным материалом в процессе изготовления (отливки) модели.

Каждый отдельный случай протезирования пациента может потребовать специфических условий для снятия оттиска. С этим связано многообразие видов оттискных материалов, включающих материалы разного химического состава, природы и механизмов твердения

(схема 16.1).

Схема 16.1.

Классификация оттискных материалов

Следует отметить, что некоторые оттискные материалы переходят из пластичного текучего состояния в твердое или эластичное в результате протекания химических реакций. Такие оттискные материалы называют необратимыми. Другие виды оттискных материалов осуществляют этот переход за счет физических процессов, например термопластичные компаунды или агаровые гидроколлоиды, эти материалы - обратимые.

В настоящее время гипс редко применяют для снятия оттисков, так как предпочитают снимать более удобные эластичные оттиски. Гипс сохранился в практике ортопедической стоматологии, как очень текучий и точный оттискной материал, для снятия оттисков с беззубых челюстей.

Оттискные компаунды - термопластичные материалы. Их вносят в полость рта в подогретом состоянии (45 °С), где после охлаждения до температуры 35-37 °С они приобретают достаточную твердость и жесткость. Следовательно, механизм твердения этих материалов имеет характер обратимого физического процесса, а не химической реакции.

Существует два типа оттискных компаундов. Тип I предназначен для снятия оттисков, а тип II - для изготовления оттискных ложек. Оттискные компаунды содержат несколько компонентов. В том числе натуральные смолы, которые и придают материалу термопластические

свойства. В состав компаунда входит воск, который также придает материалу термопластичность. В качестве смазки или пластификатора добавляют стеариновую кислоту. Оставшиеся 50% составляют наполнители и неорганические пигменты. Диатомитовые земли и тальк - наиболее типичные наполнители для термопластичных компаундов (рис. 16.1).

Рис. 16.1.

Состав и формы термопластичных компаундов

Преимущества термопластичных оттискных материалов заключаются в том, что они хорошо отделяются от материалов, применяемых для отливки моделей, и легко поддаются металлизации гальваническим способом для получения долговечной износостойкой модели.

К преимуществам термопластичных оттискных материалов также относят продолжительное состояние пластичности. Это позволяет проводить функциональные пробы, обеспечивать равномерное распределение давления по всей поверхности соприкосновения материала с подлежащими тканями в процессе снятия оттиска, возможность неоднократного введения оттиска в полость рта и его коррекцию за счет дополнительных слоев материала, которые хорошо соединяются между собой.

К недостаткам этих материалов относят сложность работы с ними, получение качественных оттисков в наибольшей степени зависит от опыта работы с компаундами.

Цинк-оксид-эвгенольные материалы применяются в основном для получения оттисков с беззубых челюстей при изготовлении полных съемных протезов, когда отсутствуют или имеются в очень незначительной степени поднутрения. Применяют также для получения тонкослойного оттиска на индивидуальной оттискной ложке из термопластичного компаунда или акрилата и для регистрации прикуса. В настоящее время в связи с бурным развитием эластомеров применение цинк-оксидэвгенольных материалов значительно сократилось.

Этот материал выпускают в виде двух паст (иногда - в виде порошка и жидкости). Одна из паст, называемая основной, содержит оксид цинка, масло и гидратированную смолу. Вторая паста, называемая катализаторной, или точнее активаторной, содержит от 12 до 15% по массе эвгенола, смолу и наполнитель типа каолина. При смешивании основной и катализаторной пасты происходит взаимодействие оксида цинка с эвгенолом с образованием

Основные требования к материалам для базисов съемных протезов. Состав и технология изготовления акрилового базиса. Классификация современных базисных материалов. Требования стандартов к физикомеханическим свойствам базисных материалов.

После того как был найден способ вулканизации каучука введением серы (Goodzhir Гуджир, 1839) и способ его применения в ортопедической стоматологии для изготовления базисов съемных протезов (Delabor, 1848, Petman, 1851), полимерные материалы стали незаменимыми для изготовления зубных протезов данного типа.

Хотя протезы из натурального каучука уже давно не изготавливаются, опыт, накопленный при работе с этим природным материалом в течение почти ста лет, позволил стоматологам и материаловедам сформулировать основные требования к базисным материалам. Материал для базисов съемных протезов должен:

Обладать биосовместимостью;

Легко очищаться и не требовать сложных процедур для соблюдения гигиены;

Иметь гладкую и плотную поверхность, не вызывающую раздражения подлежащих тканей полости рта, легко поддающуюся полированию;

Обладать устойчивостью по отношению к микробному загрязнению (устойчивость к росту бактерий);

Обеспечить точное прилегание к тканям протезного ложа;

Иметь низкое значение плотности, обеспечивая легкость протеза во рту;

Быть достаточно прочным, не разрушаться или деформироваться под нагрузками, действующими в полости рта;

Обладать термопроводностью;

Удовлетворять эстетическим требованиям;

Обеспечивать возможность проведения перебазировок и коррекций;

Иметь простую технологию изготовления и низкую стоимость.

С внедрением в стоматологическую практику 1935-1940 гг. акриловых полимеров ортопедическая стоматология получила наиболее приемлемый полимерный материал для изготовления съемных зубных протезов. Благодаря низкой относительной плотности, химической стойкости, удовлетворительной прочности, хорошим эстетическим свойствам и простоте технологии изготовления зубных протезов, акриловые пластмассы более 70 лет широко применяются в ортопедической стоматологии.

Зубные протезы из акриловых материалов изготавливают по технологии формования полимер-мономерной композиции или технологии «теста», согласно которой жидкий компонент (мономер, чаще всего метиловый эфир метакриловой кислоты или метилметакрилат), смешивается с порошкообразным компонентом (полимером). Мономер смачивает и пропитывает полимер до тестоподобной консистенции. Это тесто заформовывают или пакуют в гипсовую форму для изготовления протеза. Затем оно переходит в твердое состояние или отверждается в результате радикальной полимеризации, начало которой дает распад инициатора, пероксида бензоила, входящего в состав порошка, при нагревании тестообразной композиции (схема 13.1). Новые полимерные базисные материалы и новые технологии их применения расширили возможности получения первичного свободного радикала, добавив, например, способ светового отверждения.

Схема 13.1.

Способы инициирования полимеризации при отверждении акриловых базисных материалов

Большинство акриловых базисных материалов, выпускаемых в настоящее время, перерабатывается по этой технологии и поступает в виде комплекта «порошок-жидкость». Первоначально порошок получали размалыванием блоков полиметилметакрилата (пмма).

Однако вскоре было установлено, что более однородное по консистенции тесто можно получить при использовании в качестве порошка полимера, получаемого методом суспензионной полимеризации. Этот метод позволяет получить материал сразу в виде порошка, частицы которого имеют правильную сферическую форму. Промышленность обычно выпускает смесь порошков акриловых полимеров или сополимеров, имеющую довольно широкое распределение по молекулярной массе, со средней молекулярной массой порядка одного миллиона.

Свойства базисного материала зависят от распределения размера частиц суспензионного порошка, состава (со)полимера, его молекулярно-массового распределения и содержания пластификатора. Повышение молекулярной массы полимерного порошка и снижение до минимально возможного количества пластификатора улучшают физические и механические свойства базисного материала, однако могут отрицательно сказаться на технологических свойствах полимер-мономерного теста.

Акриловые базисные материалы - пример оригинальной композиции, которая в окончательном отвержденном виде представляет собой сочетание «старого» полимера (суспензионного порошка) и «нового» полимера, образованного при полимеризации полимер-мономерной композиции или теста в процессе изготовления готового изделия - базиса зубного протеза.

В большинстве случаев мономер, используемый для образования теста, тот же, что и мономер для изготовления самого порошка, однако часто в него вводят дополнительные модифицирующие вещества, например, бифункциональные мономеры или олигомеры, которые называют сшивающими агентами, позволяющими создать сетчатую сшитую структуру «нового» полимера. Присутствующий в составе мономерной жидкости сшивающий агент способствует повышению молекулярной массы отвержденного материала и придает ему два полезных свойства. Он уменьшает растворимость базиса в органических растворителях и повышает его прочность, а именно, стойкость к трещинообразованию под нагрузкой. Избыточное количество сшивающего агента может повысить хрупкость базиса протеза. Самыми распространенными сшива-

ющими агентами являются диметакрилаты, например диметакриловый эфир этиленгликоля (ДМЭГ), диметакриловый эфир триэтиленгликоля (ТГМ-3). Для предотвращения преждевременной полимеризации мономеров при хранении и транспортировке в мономер вводят небольшие количества ингибиторов. Действие ингибиторов эффективно проявляется уже при содержании их в сотых долях процента в расчете на мономер. В присутствии ингибиторов (гидрохинон, дифенилолпропан) скорость процесса полимеризации снижается, а полимер получается с меньшей молекулярной массой.

Многолетние клинические наблюдения акриловых базисных материалов вскрыли их существенные недостатки, главный из которых - присутствие в отвержденном базисе остаточных мономеров, ухудшающих его биосовместимость, понижающих прочность материала, приводящую к поломкам протезов в ряде случаев.

Можно выделить основные направления исследований по совершенствованию базисных материалов:

Модификация состава акриловых базисных материалов путем введения вновь синтезированных мономеров для сополимеризации при получении суспензионного порошка, в качестве сшивающих агентов в жидкость и других добавок;

Привлечение полимерных материалов других классов, например литьевых термопластов с полным отказом от технологии акриловых полимер-мономерных композиций и исключения «остаточного мономера»;

Создание новых материалов и технологий для формования и отверждения полимерных базисных материалов.

Разработки, направленные на совершенствование материалов для базисов зубных протезов, привели к созданию новых материалов, и в настоящее время международный стандарт ИСО? 1567 и разработанный на его основе ГОСТ Р 51889-2002 содержат расширенную классификацию этих материалов (схема 13.2).

Независимо от типа базисных материалов определенные требования, продиктованные назначением, предъявляются к их физико-механическим свойствам. Современные стандарты базисных материалов на полимерной основе содержат следующие основные нормы для показателей, характеризующих качество акриловых материалов горячего отверждения:

прочность при изгибе ≥65 МПа, модуль упругости при изгибе ≥2000 МПа, водопоглощение

≤30 мкг /мм 3 . Базисный материал не

Схема 13.2. Классификация полимерных материалов для базисов съемных зубных протезов (в соответствии с международным стандартом? 1567 и ГОСТ Р 51889-2002)



Похожие статьи

  • Пирог «Шарлотка» с сушеными яблоками Пирожки с сушеными яблоками

    Пирог с сушёными яблоками был очень популярен в деревнях. Готовили его обычно в конце зимы и весной, когда убранные на хранение свежие яблоки уже кончались. Пирог с сушёными яблоками очень демократичен - в начинку к яблокам можно...

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...