Элемент строения клетки живого огня. Строение клетки человека. Существенные различия между растительной и животной клеткой

Химический состав живых организмов

Химический состав живых организмов можно выразить в двух видах: атомный и молекулярный. Атомный (элементный) состав показывает соотношение атомов элементов, входящих в живые организмы. Молекулярный (вещественный) состав отражает соотношение молекул веществ.

Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке - вода и минеральные соли, важнейшие органические вещества - углеводы, липиды, белки и нуклеиновые кислоты.

Вода - преобладающий компонент всех живых организмов. Среднее содержание воды в клетках большинства живых организмов составляет около 70 %.

Минеральные соли в водном растворе клетки диссоциируют на катионы и анионы. Наиболее важные катионы - К+, Са2+, Mg2+, Na+, NHJ, анионы - Cl-, SO2-, HPO2-, H2PO-, НСО-, NO-.

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Содержание углеводов в животных клетках составляет 1-5 %, а в некоторых клетках растений достигает 70 %.

Липиды - жиры и жироподобные органические соединения, практически нерастворимые в воде. Их содержание в разных клетках сильно варьирует: от 2-3 до 50-90% в клетках семян растений и жировой ткани животных.

Белки - это биологические гетерополимеры, мономерами которых являются аминокислоты. В образовании белков участвует только 20 аминокислот. Они называются фундаментальными, или основными. Некоторые из аминокислот не синтезируются в организмах животных и человека и должны поступать с растительной пищей (они называются незаменимыми).

Нуклеиновые кислоты. Существует два типа нуклеиновых кислот: ДНК и РНК. Нуклеиновые кислоты - полимеры, мономерами которых служат нуклеотиды.

Строение клетки

Становление клеточной теории

  • Роберт Гук в 1665 году обнаружил клетки в срезе пробки и впер­вые применил термин «клетка».
  • Антони ван Левенгук открыл одноклеточные организмы.
  • Маттиас Шлейден в 1838 году и Томас Шванн в 1839 году сфор­мулировали основные положения клеточной теории. Однако они ошибочно считали, что клетки возникают из первичного неклеточ­ного вещества.
  • Рудольф Вирхов в 1858 году доказал, что все клетки образуются из других клеток путём клеточного деления.

Основные положения клеточной теории

  1. Клетка является структурной единицей всего живого. Все живые организмы состоят из клеток (исключение составляют вирусы).
  2. Клетка является функциональной единицей всего живого. Клетка проявляет весь комплекс жизненных функций.
  3. Клетка является единицей развития всего живого. Новые клетки образуются только в результате деления исходной (материнской) клетки.
  4. Клетка является генетической единицей всего живого. В хромосомах клетки содержится информация о развитии всего организма.
  5. Клетки всех организмов сходны по химическому составу, строению и функциям.

Типы клеточной организации

Среди живых организмов только вирусы не имеют клеточного строения. Все остальные организмы представлены клеточными формами жизни. Различают два типа клеточной организации: прокариотический и эукариотический. К прокариотам относятся бактерии, к эукариотам - растения, грибы и животные.

Прокариотические клетки устроены сравнительно просто. Они не имеют ядра, область расположения ДНК в цитоплазме называется нуклеоидом, единственная молекула ДНК кольцевая и не связана с белками, клетки меньше эукариотических, в состав клеточной стенки входит гликопептид — муреин, мембранные органеллы отсутствуют, их функции выполняют впячивания плазматической мембраны, рибосомы мелкие, микротрубочки отсутствуют, поэтому цитоплазма неподвижна, а реснички и жгутики имеют особую структуру.

Эукариотические клетки имеют ядро, в котором находятся хромосомы — линейные молекулы ДНК, связанные с белками, в цитоплазме расположены различные мембранные органеллы.

Растительные клетки отличаются наличием толстой целлюлозной клеточной стенки, пластид, крупной центральной вакуоли, смещающей ядро к периферии. Клеточный центр высших растений не содержит центриоли. Запасным углеводом является крахмал.

Клетки грибов имеют клеточную оболочку, содержащую хитин, в цитоплазме имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречается центриоль. Главным резервным углеводом является гликоген.

Животные клетки имеют, как правило, тонкую клеточную стенку, не содержат пластид и центральной вакуоли, для клеточного центра характерна центриоль. Запасным углеводом является гликоген.

Строение эукариотической клетки

Типичная эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.

Клеточная оболочка

Снаружи клетка окружена оболочкой, основу которой составляет плазматическая мембрана, или плазмалемма, имеющая типичное строение и толщину 7,5 нм.

Клеточная оболочка выполняет важные и весьма разнообразные функции: определяет и поддерживает форму клетки; защищает клетку от механических воздействий проникновения повреждающих биологических агентов; осуществляет рецепцию многих молекулярных сигналов (например, гормонов); ограничивает внутреннее содержимое клетки; регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава; участвует в формировании межклеточных контактов и различного рода специфических выпячивании цитоплазмы (микроворсинок, ресничек, жгутиков).

Углеродный компонент в мембране животных клеток называется гликокаликсом.

Обмен веществ между клеткой и окружающей ее средой происходит постоянно. Механизмы транспорта веществ в клетку и из нее зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме активного и пассивного транспорта.

В зависимости от вида и направления различают эндоцитоз и экзоцитоз.

Поглощение и выделение твердых и крупных частиц получило соответственно названия фагоцитоз и обратный фагоцитоз, жидких или растворенных частичек – пиноцитоз и обратный пиноцитоз.

Цитоплазма

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из гиалоплазмы и находящихся в нем разнообразных внутриклеточных структур.

Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящиеся в постоянном движении. Способность к движению или, течению цитоплазмы, называют циклозом.

Матрикс – это активная среда, в которой протекают многие физические и химические процессы и которая объединяет все элементы клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами. Включения – относительно непостоянные, встречающиеся в клетках некоторых типов в определенные моменты жизнедеятельности, например, в качестве запаса питательных веществ (зерна крахмала, белков, капли гликогена) или продуктов подлежащих выделению из клетки. Органоиды – постоянные и обязательные компоненты большинства клеток, имеющим специфическую структуру и выполняющим жизненно важную функцию.

К мембранным органоидам эукариотической клетки относят эндоплазматическую сеть, аппарат Гольджи, митохондрии, лизосомы, пластиды.

Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец — рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Аппарат Гольджи

Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Митохондрии

В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) — митохондрии (греч. «митос» — нить, «хондрион» — зерно, гранула).

Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран — наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. «криста» — гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.

Митохондрии называют «силовыми станциями» клеток» так как их основная функция — синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Лизосомы

Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

Пластиды

В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые — хлоропласты; красные, оранжевые и желтые — хромопласты; бесцветные — лейкопласты.

Обязательными для большинства клеток являются также органоиды, не имеющие мембранного строения. К ним относятся рибосомы, микрофиламенты, микротрубочки, клеточный центр.

Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом — это синтез белка. Синтез белка — сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Микротрубочки и микрофиламенты

Нитевидные структуры, состоящие из различных сократительных белков и обуславливающие двигательные функции клетки. Микротрубочки имеют вид полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламенты представляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина.

Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её цитоскелет, обуславливают циклоз, внутриклеточные перемещения органелл, расхождение хромосом при делении ядерного материала и т.д.

Клеточный центр (центросома). В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца — центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

В процессе эволюций разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функции. Это требовало наличия в них особых органоидах, которые называют специализированными в отличие от рассмотренных выше органоидов общего назначения. К их числу относят сократительные вакуоли простейших, миофибриллы мышечного волокна, нейрофибриллы и синаптические пузырьки нервных клеток, микроворсинки эпителиальных клеток, реснички и жгутики некоторых простейших.

Ядро

Ядро – наиболее важный компонент эукариотических клеток. Большинство клеток имеют одно ядро, но встречаются и многоядерные клетки (у ряда простейших, в скелетных мышцах позвоночных). Некоторые высоко специализированные клетки утрачивают ядра (эритроциты млекопитающих, например).

Ядро, как правило, имеет шаровидную или овальную форму, реже может быть сегментированным или веретеновидном. В состав ядра входят ядерная оболочка и кариоплазма, содержащая хроматин (хромосомы) и ядрышки.

Ядерная оболочка образована двумя мембранами (наружной и внутренней) и содержит многочисленные поры, через которые между ядром и цитоплазмой происходит обмен различными веществами.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, в котором находятся разнообразные белки, нуклеотиды, ионы, а также хромосомы и ядрышко.

Ядрышко – небольшое округлое тельце, интенсивно окрашивающееся и обнаруживающееся в ядрах неделящихся клеток. Функция ядрышка – синтез рРНК и соединение их с белками, т.е. сборка субчастиц рибосом.

Хроматин – специфически окрашивающиеся некоторыми красителями глыбки, гранулы и нитчатые структуры, образованные молекулами ДНК в комплексе с белками. Различные участки молекул ДНК в составе хроматина обладает разной степенью спирализации, а потому различаются интенсивностью окраски и характером генетической активности. Хроматин представляет собой форму существования генетического материала в не делящихся клетках и обеспечивает возможность удвоение и реализации заключенной в нем информации. В процессе деления клеток происходит спирализация ДНК и хроматиновые структуры образуют хромосомы.

Хромосомы – плотные, интенсивно окрашивающиеся структуры, которые являются единицами морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки.

Число хромосом в клетках каждого биологического вида постоянно. Обычно в ядрах клеток тела (соматических) хромосомы представлены парами, в половых клетках они не парны. Одинарный набор хромосом в половых клетках называют гаплоидным (n), набор хромосом в соматических клетках диплоидным (2n). Хромосомы разных организмов различаются размерами и формой.

Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называют кариотипом. В хромосомном наборе соматических клеток парные хромосомы называют гомологичными, хромосомы из разных пар — негомологичными. Гомологичные хромосомы одинаковы по размерам, форме, составу (одна унаследована от материнского, другая – от отцовского организма). Хромосомы в составе кариотипа делят также на аутосомы, или неполовые хромосомы, одинаковые у особей мужского и женского, и гетерохромосомы, или половые хромосомы, участвующие в определении пола и различающиеся у самцов и самок. Кариотип человека представлен 46 хромосомами (23 пары): 44 аутосомы и 2 половые хромосомы (у женского пола две одинаковые X-хромосомы, у мужского – X- и Y- хромосомы).

Ядро осуществляет хранение и реализацию генетической информации, управление процессом биосинтеза белка, а через белки – всеми другими процессами жизнедеятельности. Ядро участвует в репликации и распределении наследственной информации между дочерними клетками, а следовательно, и в регуляции клеточного деления и процессов развития организма.

Клетка - это единая живая система, состоящая из двух неразрывно связанных частей - цитоплазмы и ядра (цв. табл. XII).

Цитоплазма - это внутренняя полужидкая среда, в которой расположено ядро и все органоиды клетки. Она имеет мелкозернистую структуру, пронизанную многочисленными тонкими нитями. В ней содержатся вода, растворенные соли и органические вещества. Основная функция цитоплазмы - объединять в одно целое и обеспечивать взаимодействие ядра и всех органоидов клетки.

Наружная мембрана окружает клетку тонкой пленкой, состоящей из двух слоев белка, между которыми расположен жировой слой. Она пронизана многочисленными мелкими порами, через которые осуществляется обмен ионами и молекулами между клеткой и средой. Толщина мембраны 7,5-10 нм, диаметр пор 0,8-1 нм. У растений поверх нее образуется оболочка из клетчатки. Основные функции наружной мембраны - ограничивать внутреннюю среду клетки, защищать ее от повреждений, регулировать поступление ионов и молекул, выводить продукты обмена и синтезируемые вещества (секреты), соединять клетки и ткани (за счет выростов и складок). Наружная мембрана обеспечивает проникновение в клетку крупных частиц путем фагоцитоза (см. разделы в «Зоологии» - «Простейшие», в «Анатомии» - «Кровь»). Аналогичным образом происходит поглощение клеткой капель жидкости - пиноцитоз (от греч. «пино» - пью).

Эндоплазматическая сеть (ЭПС) - это состоящая из мембран сложная система каналов и полостей, пронизывающих всю цитоплазму. ЭПС бывает двух типов - гранулированная (шероховатая) и гладкая. На мембранах гранулированной сети располагается множество мельчайших телец - рибосом; в гладкой сети их нет. Основная функция ЭПС - участие в синтезе, накоплении и транспортировке основных органических веществ, вырабатываемых клеткой. Белок синтезируется в гранулированной, а углеводы и жиры - в гладкой ЭПС.

Рибосомы - мелкие тельца, диаметром 15-20 нм, состоящие из двух частиц. В каждой клетке их сотни тысяч. Большинство рибосом располагаются на мембранах гранулированной ЭПС, а часть - в цитоплазме. В их состав входят белки и р-РНК. Основная функция рибосом - синтез белка.

Митохондрии - это мелкие тельца, размером 0,2-0,7 мкм. Их количество в клетке достигает нескольких тысяч. Они часто меняют форму, размеры и местоположение в цитоплазме, перемещаясь в наиболее активную их часть. Внешний покров митохондрии состоит из двух трехслойных мембран. Наружная мембрана гладкая, внутренняя - образует многочисленные выросты, на которых располагаются дыхательные ферменты. Внутренняя полость митохондрий заполнена жидкостью, в которой размещаются рибосомы, ДНК и РНК. Новые митохондрии образуются при делении старых. Основная функция митохондрий - синтез АТФ. В них синтезируется небольшое количество белков, ДНК и РНК.

Пластиды свойственны только клеткам растений. Различают три вида пластид - хлоропласты, хромопласты и лейкопласты. Они способны к взаимному переходу друг в друга. Размножаются пластиды путем деления.

Хлоропласты (60) имеют зеленый цвет, овальную форму. Размер их 4-6 мкм. С поверхности каждый хлоропласт ограничен двумя трехслойными мембранами - наружной и внутренней. Внутри он заполнен жидкостью, в которой располагаются несколько десятков особых, связанных между собой цилиндрических структур - гран, а также рибосомы, ДНК и РНК. Каждая грана состоит из нескольких десятков наложенных друг на друга плоских мешочков из мембран. На поперечном разрезе она имеет округлую форму, диаметр ее 1 мкм. В гранах сосредоточен весь хлорофилл, в них происходит процесс фотосинтеза. Образующиеся при этом углеводы вначале скапливаются в хлоропласте, затем поступают в цитоплазму, а из нее - в другие части растения.

Хромопласты определяют красную, оранжевую и желтую окраску цветов, плодов и осенних листьев. Они имеют форму многогранных кристаллов, расположенных в цитоплазме клетки.

Лейкопласты бесцветны. Они содержатся в неокрашенных частях растений (стеблях, клубнях, корнях), имеют округлую или палочковидную форму (размером 5-6 мкм). В них откладываются запасные вещества.

Клеточный центр обнаружен в клетках животных и низших растений. Он состоит из двух маленьких цилиндров - центриолей (диаметром около 1 мкм), расположенных перпендикулярно друг другу. Стенки их состоят из коротких трубочек, полость заполнена полужидким веществом. Основная их роль - образование веретена деления и равномерное распределение хромосом по дочерним клеткам.

Комплекс Гольджи получил название по имени итальянского ученого, впервые открывшего его в нервных клетках. Он имеет разнообразную форму и состоит из ограниченных мембранами полостей, отходящих от них трубочек и расположенных на их концах пузырьков. Основная функция - накопление и выведение органических веществ, синтезируемых в эндоплазматической сети, образование лизосом.

Лизосомы - округлые тельца диаметром около 1 мкм. С поверхности лизосома ограничена трехслойной мембраной, внутри ее находится комплекс ферментов, способных расщеплять углеводы, жиры и белки. В клетке имеется несколько десятков лизосом. Новые лизосомы образуются в комплексе Гольджи. Их основная функция - переваривание пищи, попавшей в клетку путем фагоцитоза, и удаление отмерших органоидов.

Органоиды движения - жгутики и реснички - представляют собой выросты клетки и имеют однотипное строение у животных и растений (общность их происхождения). Движение многоклеточных животных обеспечивается сокращениями мышц. Основной структурной единицей мышечной клетки являются миофибриллы - тонкие нити длиной более 1 см, диаметром 1 мкм, расположенные пучками вдоль мышечного волокна.

Клеточные включения - углеводы, жиры и белки - относятся к непостоянным компонентам клетки. Они периодически синтезируются, накапливаются в цитоплазме в качестве запасных веществ и используются в процессе жизнедеятельности организма.

Углеводы концентрируются в зернах крахмала (у растений) и гликогена (у животных). Их много в клетках печени, клубнях картофеля и других органах. Жиры накапливаются в виде капель в семенах растений, подкожной клетчатке, соединительной ткани и т. д. Белки откладываются в виде зерен в яйцеклетках животных, семенах растений и других органах.

Ядро - один из важнейших органоидов клетки. От цитоплазмы его отделяет ядерная оболочка, состоящая из двух трехслойных мембран, между которыми располагается узкая полоска из полужидкого вещества. Через поры ядерной оболочки осуществляется обмен веществ между ядром и цитоплазмой. Полость ядра заполнена ядерным соком. В нем находятся ядрышко (одно или несколько), хромосомы, ДНК, РНК, белки и углеводы. Ядрышко - округлое тельце размером от 1 до 10 мкм и более; в нем синтезируется РНК. Хромосомы видны только в делящихся клетках. В интерфазном (неделящемся) ядре они присутствуют в виде тонких длинных нитей хроматина (соединения ДНК с белком). В них заключена наследственная информация. Число и форма хромосом у каждого вида животных и растений строго определенные. Соматические клетки, из которых состоят все органы и ткани, содержат диплоидный (двойной) набор хромосом (2 n); половые клетки (гаметы) - гаплоидный (одинарный) набор хромосом (n). Диплоидный набор хромосом в ядре соматической клетки создается из парных (одинаковых), гомологичных хромосом . Хромосомы разных пар (негомологичные) отличаются друг от друга по форме, месту расположения центромеры и вторичных перетяжек.

Прокариоты - это организмы с мелкими, примитивно устроенными клетками, без четко выраженного ядра. К ним относятся сине-зеленые водоросли, бактерии, фаги и вирусы. Вирусы представляют собой молекулы ДНК или РНК, покрытые белковой оболочкой. Они так малы, что их можно разглядеть только в электронный микроскоп. У них отсутствуют цитоплазма, митохондрии и рибосомы, поэтому они не способны синтезировать белок и энергию, необходимые для их жизнедеятельности. Попав в живую клетку и используя чужие органические вещества и энергию, они нормально развиваются.

Эукариоты - организмы с более крупными типичными клетками, содержащие все основные органоиды: ядро, эндоплазматическую сеть, митохондрии, рибосомы, комплекс Гольджи, лизосомы и другие. К эукариотам относятся все остальные растительные и животные организмы. Их клетки имеют сходный тип строения, что убедительно доказывает единство их происхождения.

План: I. Цитология. II. Строение клетки: 1. мембрана; 2. ядро; 3. цитоплазма: а) органоиды: 1.эндоплазматическая сеть; 2.рибосомы; 3.комплекс Гольджи; 4.лизосомы; 5.клеточный центр; 6.энергетические органоиды. б) клеточные включения: 1. углеводы; 2. жиры; 3. белки. III. Функции клеток: 1. деление клетки; 2. обмен веществ: а) пластический обмен; б) энергетический обмен. 3. раздражимость; 4. роль органических веществ в осуществлении функций клетки: а) белки; б) углеводы; в) жиры; г) нуклеиновые кислоты: 1. ДНК; 2. РНК; д) АТФ. IV. Новые открытия в области клетки. V. Хабаровские цитологи. VI. Заключение Цитология. Цитология (греч. «цитос» - клетка, «логос» - наука) – наука о клетках. Цитология изучает строение и химический состав клеток, функции клеток в организме животных и растений, размножение и развитие клеток, приспособление клеток к условиям окружающей среды. Современная цитология – наука комплексная. Она имеет самые тесные связи с другими биологическими науками, например, с ботаникой, зоологией, физиологией, учением об эволюции органического мира, а также с молекулярной биологией, химией, физикой, математикой. Цитология – одна из молодых биологических наук, её возраст около 100 лет. Возраст же термина «клетка» насчитывает около 300 лет. Исследуя клетку как важнейшую единицу живого, цитология занимает центральное положение в ряду биологических дисциплин. Изучение клеточного строения организмов было начато микроскопами XVII века, в XIX веке была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В ХХ веке быстрому прогрессу цитологии способствовали новые методы: электронная микроскопия, изотопные индикаторы, культивирование клеток и др. Название «клетка» предложил англичанин Р. Гук ещё в 1665 г., но только в XIX веке началось её систематическое изучение. Несмотря на то, что клетки могут входить в состав различных организмов и органов (бактерий, икринок, эритроцитов, нервов и т.д.) и даже существовать как самостоятельные (простейшие) организмы, в их строении и функциях обнаружено много общего. Хотя отдельная клетка представляет собой наиболее простую форму жизни, строение её достаточно сложно… Строение клетки. Клетки находятся в межклеточном веществе, обеспечивающем их механическую прочность, питание и дыхание. Основные части любой клетки – цитоплазма и ядро. Клетка покрыта мембраной, состоящей из нескольких слоёв молекул, обеспечивающей избирательную проницаемость веществ. В цитоплазме расположены мельчайшие структуры – органоиды. К органоидам клетки относятся: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи, клеточный центр. Мембрана. Если рассматривать в микроскоп клетку какого-нибудь растения, например, корешка лука, то видно, что она окружена сравнительно толстой оболочкой. Оболочка совсем другой природы хорошо видна у гигантского аксона кальмара. Но не оболочка выбирает, какие вещества пускать и какие не пускать в аксон. Оболочка клетки служит как бы дополнительным «земляным валом», который окружает и защищает главную крепостную стену – клеточную мембрану с её автоматическими воротами, насосами, специальными «наблюдателями», ловушками и другими удивительными приспособлениями. «Мембрана – крепостная стена клетки», но только в том смысле, что она ограждает и защищает внутреннее содержимое клетки. Растительную клетку можно отделить от наружной оболочки. Можно разрушить оболочку у бактерий. Тогда может показаться, что они вообще ничем не отделены от окружающего раствора – это просто кусочки студня с внутренними включениями. Новые физические методы, прежде всего электронная микроскопия, не только позволили с несомненностью установить наличие мембраны, но и рассмотреть некоторые её детали. Внутреннее содержимое клетки и её мембрана состоят в основном из одних и тех же атомов. Эти атомы – углерод, кислород, водород, азот – расположены в начале таблицы Менделеева. На электронной фотографии тонкого среза клетки мембраны видны в виде двух тёмных линий. Общая толщина мембраны может быть точно измерена с этих снимков. Она равно всего 70-80 А (1А = 10-8 см), т.е. в 10 тыс. раз меньше толщины человеческого волоса. Итак, клеточная мембрана – очень мелкое молекулярное сито. Однако мембрана – весьма своеобразное сито. Её поры скорее напоминают длинные узкие проходы в крепостной стене средневекового города. Высота и ширина этих проходов в 10 раз меньше длины. Кроме того, в этом сите отверстия встречаются очень редко – поры занимают у некоторых клеток только одну миллионную часть площади мембраны. Это соответствует всего одному отверстию на площади обычного волосяного сита для просеивания муки, т.е. с обычной точки зрения мембрана вовсе не сито. Ядро. Ядро - самый заметный и самый большой органоид клетки, который первым привлёк внимание исследователей. Клеточное ядро (лат. nucleus, греч. карион) открыто в 1831 году шотландским учёным Робертом Брауном. Его можно сравнить с кибернетической системой, где имеет место хранение, переработка и передача в цитоплазму огромной информации, заключённой в очень малом объёме. Ядро играет главную роль в наследственности. Ядро выполняет также функцию восстановления целостности клеточного тела (регенерация), является регулятором всех жизненных отправлений клетки. Форма ядра чаще всего шарообразная или яйцевидная. Важнейшей составной частью ядра является хроматин (от греч. хрома – цвет, окраска) – вещество, хорошо окрашивающееся ядерными красками. Ядро отделено от цитоплазмы двойной мембраной, которая непосредственно связана с эндоплазматической сетью и комплексом Гольджи. На ядерной мембране обнаружены поры, через которые (как и через наружную цитоплазматическую мембрану) одни вещества проходят легче, чем другие, т.е. поры обеспечивают избирательную проницаемость мембраны. Внутреннее содержимое ядра составляет ядерный сок, заполняющий пространство между структурами ядра. В ядре всегда присутствует одно или несколько ядрышек. В ядрышке образуются рибосомы. Поэтому между активностью клетки и размером ядрышек существует прямая связь: чем активнее протекают процессы биосинтеза белка, тем крупнее ядрышки и, наоборот, в клетках, где синтез белка ограничен, ядрышки или очень невелики, или совсем отсутствуют. В ядре расположены нитевидные образования – хромосомы. В ядре клетки тела человека (кроме половых) содержится по 46 хромосом. Хромосомы являются носителями наследственных задатков организма, передающихся от родителей потомству. Большинство клеток содержит одно ядро, но существуют и многоядерные клетки (в печени, в мышцах и др.). Удаление ядра делает клетку нежизнеспособной. Цитоплазма. Цитоплазма – полужидкая слизистая бесцветная масса, содержащая 75-85% воды, 10-12% белков и аминокислот, 4-6% углеводов, 2-3%жиров и липидов, 1% неорганических и других веществ. Цитоплазматическое содержимое клетки способно двигаться, что способствует оптимальному размещению органоидов, лучшему протеканию биохимических реакций, выделению продуктов обмена и т.д. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты Цитоплазма пронизана сложной сетчатой системой, связанной с наружной плазматической мембраной и состоящей из сообщающихся между собой канальцев, пузырьков, уплощённых мешочков. Такая сетчатая система названа вакуолярной системой. Органоиды. Цитоплазма содержит ряд мельчайших структур клетки – органоидов, которые выполняют различные функции. Органоиды обеспечивают жизнедеятельность клетки. Эндоплазматическая сеть. Название этого органоида отражает место расположения его в центральной части цитоплазмы (греч. «эндон» - внутри). ЭПС представляет собой очень разветвлённую систему канальцев, трубочек, пузырьков, цистерн разной величины и формы, отграниченных мембранами от цитоплазмы клетки. ЭПС бывает двух видов: гранулярная, состоящая из канальцев и цистерн, поверхность которых усеяна зёрнышками (гранулами) и агранулярная, т.е. гладкая (без гран). Граны в эндоплазматической сети ни что иное, как рибосомы. Интересно, что в клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм – агранулярная. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная ЭПС преобладает в клетках, активно синтезирующих белок. Считают, что агранулярная сеть в большей степени предоставлена в тех клетках, где идёт активный синтез липидов (жиров и жироподобных веществ). Оба вида эндоплазматической сети не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей её средой. Рибосомы. Рибосомы – не мембранные клеточные органоиды, состоящие из рибонуклеиновой кислоты и белка. Их внутреннее строение во многом ещё остаётся загадкой. В электронном микроскопе они имеют вид округлых или грибовидных гранул. Каждая рибосомы разделена желобком на большую и маленькую части (субъединицы). Часто несколько рибосом объединяются нитью специальной рибонуклеиновой кислоты (РНК), называемой информационной (и-РНК). Рибосомы осуществляют уникальную функцию синтеза белковых молекул из аминокислот. Комплекс Гольджи. Продукты биосинтеза поступают в просветы полостей и канальцев ЭПС, где они концентрируются в специальный аппарат – комплекс Гольджи, расположенный вблизи ядра. Комплекс Гольджи участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом и т.д. Комплекс Гольджи был открыт итальянским цитологом Камилио Гольджи (1844 – 1926) и в 1898 году был назван «комплексом (аппаратом) Гольджи». Белки, выработанные в рибосомах, поступают в комплекс Гольджи, а когда они требуются другому органоиду, то часть комплекса Гольджи отделяется, и белок доставляется в требуемое место. Лизосомы. Лизосомы (от греч. «лизео» – растворяю и «сома» - тело) - это органоиды клетки овальной формы, окружённые однослойной мембраной. В них находится набор ферментов, которые разрушают белки, углеводы, липиды. В случае повреждения лизосомной мембраны ферменты начинают расщеплять и разрушать внутреннее содержимое клетки, и она погибает. Клеточный центр. Клеточный центр можно наблюдать в клетках, способных делиться. Он состоит из двух палочковидных телец – центриолей. Находясь около ядра и комплекса Гольджи, клеточный центр участвует в процессе деления клетки, в образовании веретена деления. Энергетические органоиды. Митохондрии (греч. «митос» - нить, «хондрион» - гранула) называют энергетическими станциями клетки. Такое название обуславливается тем, что именно в митохондриях происходит извлечение энергии, заключённой в питательных веществах. Форма митохондрий изменчива, но чаще всего они имеют вид нитей или гранул. Размеры и число их также непостоянны и зависят от функциональной активности клетки. На электронных микрофотографиях видно, что митохондрии состоят из двух мембран: наружной и внутренней. Внутренняя мембрана образует выросты, называемые кристами, которые сплошь устланы ферментами. Наличие крист увеличивает общую поверхность митохондрий, что важно для активной деятельности ферментов. В митохонлриях обнаружены свои специфические ДНК и рибосомы. В связи с этим они самостоятельно размножаются при делении клетки. Хлоропласты – по форме напоминают диск или шар с двойной оболочкой – наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы и особые мембранные структуры – граны, связанные между собой и внутренней мембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаря хлорофиллу в хлоропластах происходит превращение энергии солнечного света в химическую энергию АТФ (аденозинтрифосфат). Энергия АТФ используется в хлоропластах для синтеза углеводов из углекислого газа и воды. Клеточные включения. К клеточным включениям относятся углеводы, жиры и белки. Углеводы. Углеводы состоят из углерода, водорода и кислорода. К углеводам относятся глюкоза, гликоген (животный крахмал). Многие углеводы хорошо растворимы в воде и являются основными источниками энергии для осуществления всех жизненных процессов. При распаде одного грамма углеводов освобождается 17,2 кДж энергии. Жиры. Жиры образованы теми же химическими элементами, что и углеводы. Жиры нерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служат запасным источником энергии в организме. При полном расщеплении одного грамма жира освобождается 39, 1 кДж энергии. Белки. Белки являются основными веществами клетки. Белки состоят из углерода, водорода, кислорода, азота, серы. Часто в состав белка входит фосфор. Белки служат главным строительным материалом. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль ферментов (ускорителей течения химических реакций). В одной клетке насчитывается до 1000 разных белков. При распаде белков в организме освобождается примерно такое же количество энергии, как и при расщеплении углеводов. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зёрен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ. Функции клеток. Клетка обладает различными функциями: деление клетки, обмен веществ и раздражимость. Деление клетки. Деление – это вид размножения клеток. Во время деления клетки хорошо заметны хромосомы. Набор хромосом в клетках тела, характерный для данного вида растений и животных, называется кариотипом. В любом многоклеточном организме существует два вида клеток – соматические (клетки тела) и половые клетки или гаметы. В половых клетках число хромосом в два раза меньше, чем в соматических. В соматических клетках все хромосомы представлены парами – такой набор называется диплоидным и обозначается 2n. Парные хромосомы (одинаковые по величине, форме, строению) называются гомологичными. В половых клетках каждая из хромосом в одинарном числе. Такой набор называется гаплоидным и обозначается n. Наиболее распространённым способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки. Во время подготовки клетки к делению – в период интерфазы (период между двумя актами деления) число хромосом удваивается. Вдоль каждой исходной хромосомы из имеющихся в клетке химических соединений синтезируется её точная копия. Удвоенная хромосома состоит из двух половинок – хроматид. Каждая из хроматид содержит одну молекулу ДНК. В период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются также все важнейшие структуры клетки. Продолжительность интерфазы в среднем 10-20 часов. Затем наступает процесс деления клетки – митоз. Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза и телофаза. В профазе хорошо видны центриоли – органоиды, играющие определённую роль в делении дочерних хромосом. Центриоли делятся и расходятся к разным полюсам. От них протягиваются нити, образующие веретено деления, которое регулирует расхождение хромосом к полюсам делящейся клетки. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются. Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки. Каждая хромосома состоит из двух хроматид и имеет перетяжку – центромеру, к которой прикрепляются нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой. В анафазе дочерние хромосомы расходятся к разным полюсам клетки. В последней стадии – телофазе – хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко. В процессе деления цитоплазмы все её органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1-2 часа. В результате митоза все дочерние клетки содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз – это способ деления клетки, заключающийся в точном распределении генетического материала между дочерними клетками, обе дочерние клетки получают диплоидный набор хромосом. Биологическое значение митоза огромно. Функционирование органов и тканей многоклеточного организма было бы невозможно без сохранения одинакового генетического материала в бесчисленных клеточных поколениях. Митоз обеспечивает такие важные процессы жизнедеятельности, как эмбриональное развитие, рост, поддержание структурной целостности тканей при постоянной утрате клеток в процессе их функционирования (замещение погибших эритроцитов, эпителия кишечника и пр.), восстановление органов и тканей после повреждения. Обмен веществ. Основная функция клетки – обмен веществ. Из межклеточного вещества в клетки постоянно поступают питательные вещества и кислород и выделяются продукты распада. Так, клетки человека поглощают кислород, воду, глюкозу, аминокислоты, минеральные соли, витамины, а выводят углекислый газ, воду, мочевину, мочевую кислоту и т.д. Набор веществ, свойственный клеткам человека, присущ и многим другим клеткам живых организмов: всем животным клеткам, некоторым микроорганизмам. У клеток зелёных растений характер веществ существенно иной: пищевые вещества у них составляют углекислый газ и вода, а выделяется кислород. У некоторых бактерий, обитающих на корнях бобовых растений (вика, горох, клевер, соя), пищевым веществом служит азот атмосферы, а выводятся соли азотной кислоты. У микроорганизма, селящегося в выгребных ямах и на болотах, пищевым веществом служит сероводород, а выделяется сера, покрывая поверхность воды и почвы жёлтым налётом серы. Таким образом, у клеток разных организмов характер пищевых и выделяемых веществ различается, но общий закон действителен для всех: пока клетка жива, происходит непрерывное движение веществ – из внешней среды в клетку и из клетки во внешнюю среду. Обмен веществ выполняет две функции. Первая функция – обеспечение клетки строительным материалом. Из веществ, поступающих в клетку, - аминокислот, глюкозы, органических кислот, нуклеотидов – в клетке непрерывно происходит биосинтез белков, углеводов, липидов, нуклеиновых кислот. Биосинтез – это образование белков, жиров, углеводов и их соединений из более простых веществ. В процессе биосинтеза образуются вещества, свойственные определённым клеткам организма. Например, в клетках мышц синтезируются белки, обеспечивающие их сокращение. Из белков, углеводов, липидов, нуклеиновых кислот формируется тело клетки, её мембраны, органоиды. Реакции биосинтеза особенно активно идут в молодых, растущих клетках. Однако биосинтез веществ постоянно происходит в клетках, закончивших рост и развитие, так как химический состав клетки в течение её жизни многократно обновляется. Обнаружено, что «продолжительность жизни» молекул белков клетки колеблется от 2-3 часов до нескольких дней. После этого срока они разрушаются и заменяются вновь синтезированными. Таким образом, клетка сохраняет функции и химический состав. Совокупность реакций, способствующих построению клетки и обновлению её состава, носит название пластического обмена (греч. «пластикос» - лепной, скульптурный). Вторая функция обмена веществ – обеспечение клетки энергией. Любое проявление жизнедеятельности (движение, биосинтез веществ, генерация тепла и др.) нуждаются в затрате энергии. Для энергообеспечения клетки используется энергия химических реакций, которая освобождается в результате расщепления поступающих веществ. Эта энергия преобразуется в другие виды энергии. Совокупность реакций, обеспечивающих клетки энергией, называют энергетическим обменом. Пластический и энергетический обмены неразрывно связаны между собой. С одной стороны, все реакции пластического обмена нуждаются в затрате энергии. С другой стороны, для осуществления реакции энергетического обмена необходим постоянный синтез ферментов, так как «продолжительность жизни» молекул ферментов невелика. Через пластический и энергетический обмены осуществляется связь клетки с внешней средой. Эти процессы являются основным условием поддержания жизни клетки, источником её роста, развития и функционирования. Живая клетка представляет собой открытую систему, поскольку между клеткой и окружающей средой постоянно происходит обмен веществ и энергии. Раздражимость. Живые клетки способны реагировать на физические и химические изменения окружающей их среды. Это свойство клеток называется раздражимостью или возбудимостью. При этом из состояния покоя клетка переходит в рабочее состояние – возбуждение. При возбуждении в клетках меняется скорость биосинтеза и распада веществ, потребление кислорода, температура. В возбуждённом состоянии разные клетки выполняют свойственные им функции. Железистые клетки образуют и выделяют вещества, мышечные клетки сокращаются, в нервных клетках возникает слабый электрический сигнал – нервный импульс, который может распространяться по клеточным мембранам. Роль органических соединений в осуществлении функций клетки. Главная роль в осуществлении функций клетки принадлежит органическим соединениям. Среди них наибольшее значение имеют белки, жиры, углеводы и нуклеиновые кислоты. Белки. Белки представляют собой большие молекулы, состоящие из сотен и тысяч элементарных звеньев – аминокислот. Всего в живой клетке известно 20 видов аминокислот. Название аминокислоты получили из-за содержания в своём составе аминной группы NH2. Белки в обмене веществ занимают особое место. Ф. Энгельс так оценил эту роль белков: «Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причём с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». И на самом деле, везде, где есть жизнь, находят белки. Белки входят в состав цитоплазмы, гемоглобина, плазмы крови, многих гормонов, иммунных тел, поддерживают постоянство водно-солевой среды организма. Без белков нет роста. Ферменты, обязательно участвующие во всех этапах обмена веществ, имеют белковую природу. Углеводы. Углеводы поступают в организм в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками. Углеводы – главный источник энергии, особенно при усиленной мышечной работе. Больше половины энергии организм взрослых людей получает за счёт углеводов. Конечные продукты обмена углеводов – углекислый газ и вода. В крови количество глюкозы поддерживается на относительно постоянном уровне (около 0,11%). Уменьшение содержания глюкозы вызывает понижение температуры тела, расстройство деятельности нервной системы, утомление. Повышение количества глюкозы вызывает её отложение в печени в виде запасного животного крахмала – гликогена. Значение глюкозы для организма не исчерпывается её ролью как источника энергии. Глюкоза входит в состав цитоплазмы и, следовательно, необходима при образовании новых клеток, особенно в период роста. Углеводы имеют важное значение и в обмене веществ центральной нервной системы. При резком снижении количества сахара в крови отмечаются расстройства деятельности нервной системы. Наступают судороги, бред, потеря сознания, изменение деятельности сердца. Жиры. Поступивший с пищей жир в пищеварительном тракте расщепляется на глицерин и жирные кислоты, которые всасываются в основном в лимфу и лишь частично в кровь. Жир используется организмом как богатый источник энергии. При распаде одного грамма жира в организме освобождается энергии в два раза больше, чем при распаде такого же количества белков и углеводов. Жиры входят и в состав клеток (цитоплазма, ядро, клеточные мембраны), где их количество устойчиво и постоянно. Скопления жира могут выполнять и другие функции. Например, подкожный жир препятствует усиленной отдаче тепла, околопочечный жир предохраняет почку от ушибов и т.д. Недостаток жиров в пище нарушает деятельность центральной нервной системы и органов размножения, снижает выносливость к различным заболеваниям. С жирами в организм поступают растворимые в них витамины (витамины A, D, E и др.), имеющие для человека жизненно важное значение. Нуклеиновые кислоты. Нуклеиновые кислоты образуются в клеточном ядре. Отсюда и произошло название (лат. «нуклеус» - ядро). Входя в состав хромосом, нуклеиновые кислоты участвуют в хранении и передаче наследственных свойств клетки. Нуклеиновые кислоты обеспечивают образование белков. ДНК. Молекула ДНК – дезоксирибонуклеиновая кислота – была открыта в клеточных ядрах ещё в 1868 году швейцарским врачом И.Ф. Мишером. Позднее узнали, что ДНК находится в хромосомах ядра. Основная функция ДНК – информационная: порядок расположения её четырёх нуклеотидов (нуклеотид - мономер; мономер – вещество, состоящее из повторяющихся элементарных звеньев) несёт важную информацию – определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков (ферментов, гормонов) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков, т.е. ДНК является носителем наследственной информации. РНК. РНК – рибонуклеиновая кислота – очень похожа на ДНК и тоже построена из мономерных нуклеотидов четырёх типов. Главное отличие РНК от ДНК – одинарная, а не двойная цепочка молекулы. Различают несколько видов РНК, все они принимают участие в реализации наследственной информации, хранящейся в молекулах ДНК, через синтез белка. АТФ. Очень важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). АТФ – универсальный биологический аккумулятор энергии: световая энергия Солнца и энергия, заключённая в потребляемой пище, запасается в молекулах АТФ. Энергию АТФ (Е) все клетки используют для процессов биосинтеза, движения нервных импульсов, свечений и других процессов жизнедеятельности. Новые открытия в области клетки. Раковые клетки. Два британца и американец разделят Нобелевскую премию за 2001 г. по медицине. Их открытия в области развития клеток, возможно, позволят разработать новые методы борьбы с раком. Как сообщил представитель Нобелевского комитета, ученые-медики разделят премию в $943 000. 61-летний американец Лиланд Хартвел работает в Исследовательском раковом центре Фреда Хатчисона в Сиэтле. Британцы 58- летний Тимоти Хунт и 52-летний Пол Нурс - сотрудники отделений Королевского фонда исследований рака в Хертфордшире и Лондоне. Научные открытия, совершенные лауреатами касаются жизненного цикла раковых клеток. В частности, они обнаружили ключевые регуляторы деления клеток - нарушение этого процесса ведет к возникновению раковых клеток. Результаты исследований могут быть использованы при диагностике болезни и имеют важное значение для перспективы создания новых методов лечения рака. Трое победителей были определены утром 08.10.01 в результате голосования членов комитета, которое прошло в Каролинском институте Стокгольма. Клонирование. Клонированная овца Долли явила миру технологию получения из взрослой клетки точной копии животного. А значит, принципиально возможным стало получить точную копию человека. И теперь человечество встало перед вопросом: что будет, если кто- нибудь эту возможность реализует?.. Если вспомнить про трансплантацию органов, которая позволяет заменить одну или несколько "запчастей", то клонирование теоретически позволяет обеспечить полную замену "агрегата" под названием человеческий организм. Да это же решение проблемы личного бессмертия! Ведь благодаря клонированию из собственных планов на жизнь можно исключить болезнь, инвалидность и даже смерть! Звучит славно, не правда ли? Особенно, если учесть, что копии должны быть живыми и находиться при этом в таких условиях, чтобы как минимум не портились. Представляете себе эти "склады" живых человеческих "запчастей"? А есть ведь еще и "польза" вторая - использование клонирования не только для получения органов, но и для проведения исследований и экспериментов на живом "материале". Далее перед дерзающими маячит манящая идея воспроизводства Эйнштейнов, Пушкиных, Лобачевских, Ньютонов. Налепили гениев и рванули вперед по пути прогресса. Однако буквально все - от ученых до простой публики - сознают, что выращивание человека на "запчасти" порождает немало вопросов этического плана. Уже сейчас мировое сообщество располагает документами, согласно которым подобное не должно быть позволено. Конвенция о правах человека устанавливает принцип: "Интересы и благо человеческого существа должны иметь приоритет над односторонне рассматриваемыми интересами общества и развития науки". Российское законодательство также устанавливает весьма жесткие ограничения на использование человеческого материала. Так, в предлагаемой медиками поправке к проекту "Закона о репродуктивных правах граждан и гарантиях их осуществления" содержится такай пункт: "Человеческий эмбрион не может быть целенаправленно получен или клонирован в научных, фармакологических или лечебных целях". Вообще, дискуссии по этому поводу в мире идут достаточно бурные. Если американские эксперты из федеральной комиссии по биотехнологиям еще только начинают изучать правовые и этические аспекты этого открытия и представлять его на суд законодателей, то Ватикан остался верен своей прежней позиции, заявив о неприемлемости вмешательства человека в процессы репродукции и вообще - в генетический материал человека и животного. Исламские теологи выражают озабоченность тем, что клонирование людей нарушит и без того разрываемый противоречиями институт брака. Индуисты и буддисты мучительно размышляют над тем, как соотнести клонирование с проблемами кармы и дхармы. Всемирная организация здравоохранения /ВОЗ/ также негативно относится к клонированию собственно человека. Генеральный директор ВОЗ Хироси Накадзима считает, что "использование клонирования для производства человека неприемлемо с этической точки зрения". Специалисты ВОЗ исходят из того, что применение метода клонирования к людям нарушило бы такие фундаментальные принципы медицинской науки и права, как уважение человеческого достоинства и безопасность человеческого генетического потенциала. Вместе с тем ВОЗ не против исследований в области клонирования клеток, поскольку это могло бы принести пользу, в частности, для диагностики и изучения рака. Не возражают медики и против клонирования животных, которое может содействовать изучению болезней, поражающих людей. При этом ВОЗ считает, что хотя клонирование животных способно принести существенные выгоды медицине, нужно быть все время начеку, помня о возможных негативных последствиях - таких, например, как перенос заразных болезней от животных человеку. Опасения, высказываемые по поводу клонирования в современных культурах Запада и Востока, вполне объяснимы. Как бы суммируя их, известный французский цитобиолог Пьер Шамбон предлагает ввести 50-летний мораторий на вторжение в хромосомы человека, если это не направлено на устранение генетических дефектов и заболеваний. А вот еще вопрос не из маловажных: клонируется ли душа? Можно ли вообще считать искусственного человека личностью, наделенной ею? Точка зрения церкви на этот счет абсолютно однозначна. "Даже если такой искусственный человек будет создан руками ученых, у него не будет души, а значит, это не человек, а зомби", - считает священник Храма Вознесения Христова отец Олег. Но и в возможность создания клонированного человека представитель церкви не верит, так как убежден, что только Бог может сотворить человека. "Чтобы в клетке ДНК, помимо чисто биологических и механических соединений начался процесс роста живого человеческого существа, наделенного душой, в этом должен участвовать святой дух, а такого при искусственном зарождении жизни нет». Хабаровские цитологи. Вопросами цитологии и гистологии в Хабаровском крае занимались сотрудники Медицинского института (ныне Дальневосточный Государственный Медицинский Университет – ДВГМУ). У истоков стоял Алов Иосиф Александрович, заведующий кафедрой гистологии в 1952 – 1961 гг. С 1962 по 1982 гг. заведовал лабораторией гистологии в Институте Морфологии Человека АМН СССР в г. Москва. Ныне кафедру гистологии возглавляет Рыжавский Борис Яковлевич (с 1979 года), защитивший докторскую диссертацию в 1985 году. Основными направлениями работы кафедры гистологии являются следующие: - овариоэктология (удаление яичника) и её влияние на формирование нормальной морфологии коры больших полушарий у потомства (определяют особые количественные показатели, например, ростовые индексы и т.п.) - влияние алкоголя и ноотропных препаратов на потомство - исследование плаценты и её патологий в ходе эмбриогенеза и влияние этих отклонений на дальнейший онтогенез. Используются главным образом классические гистологические методики для решения этих задач. Также вопросами, связанными с клеткой и тканями, занимается Центральная научно-исследовательская лаборатория (ЦНИЛ) при ДВГМУ, возглавляемая профессором Сергеем Серафимовичем Тимошиным, под руководством которого защищены 3 докторских и 18 кандидатских диссертаций. По его инициативе и непосредственном участии в Хабаровском крае была создана первая радио иммунологическая лаборатория. Внедрена в практику здравоохранения методика определения гормонов и биологически-активных веществ радио иммунным и иммуноферментным методами, что позволяет осуществлять раннюю диагностику ряда заболеваний, в том числе онкологических. Заключение. Клетка – это самостоятельное живое существо. Она питается, двигается в поисках пищи, выбирает, куда идти и чем питаться, защищается и не пускает внутрь из окружающей среды неподходящие вещества и существа. Всеми этими способностями обладают одноклеточные организмы, например, амёбы. Клетки, входящие в состав организма, специализированы и не обладают некоторыми возможностями свободных клеток. Клетка – самая мелкая единица живого, лежащая в основе строения и развития растительных и животных организмов нашей планеты. Она представляет собой элементарную живую систему, способную к самообновлению, саморегуляции, самовоспроизведению. Клетка является основным «кирпичиком жизни». Вне клетки жизни нет. Живая клетка является основой всех форм жизни на Земле – животной и растительной. Исключения – а, как известно, исключения лишний раз подтверждают правила – составляют лишь вирусы, однако и они не могут функционировать вне клеток, которые представляют собой «дом», где «живут» эти своеобразные биологические образования. Список используемой литературы: 1. Батуева А.С. «Биология. Человек», учебник для 9 класса. 2. Вернандский В.И. «Проблемы биогеохимии». 3. Воронцов Н.Н., Сухорукова Л.Н. «Эволюция органического мира». 4. Дубинин Н., Губарев В. «Нить жизни». 5. Затула Д.Г., Мамедова С.А. «Вирус – друг или враг?». 6. Карузина И.П. «Учебное пособие по основам генетики». 7. Либерман Е.А. «Живая клетка». 8. Полянский Ю.И. «Общая биология», учебник для 10-11 классов. 9. Прохоров А.М. «Советский энциклопедический словарь». 10. Скулачёв В. «Рассказы о биоэнергетике». 11. Хрипкова А.Г., Колесов Д.В., Миронов В.С., Шепило И.Н. «Физиология человека». 12. Цузмер А.М., Петришина О.Л. «Биология, человек и его здоровье». 13. Чухрай Е.С. «Молекула, жизнь, организм». 14. Штрбанова С. «Кто мы? Книга о жизни, клетках и учёных».

У многоклеточного организма содержимое клетки отделено от внешней среды и соседних клеток плазматической мембраной, или плазмалеммой. Все содержимое клетки, за исключением ядра, носит название цитоплазмы. Она включает вязкую жидкость - цитозоль (или гиалоплазму), мембранные и немембранные компоненты. К мембранным компонентам клетки относятся ядро, митохондрии, пластиды, эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли растительных клеток. К немембранным компонентам относятся хромосомы, рибосомы, клеточный центр и центриоли, органоиды передвижения (реснички и жгутики). Клеточная мембрана (плазмалемма) состоит из липидов и белков. Липиды в мембране образуют двойной слой (кислой), а белки пронизывают всю ее толщу или располагаются на внешней или внутренней поверхности мембраны. К некоторым белкам, находящимся на наружной поверхности, прикреплены углеводы. Белки и углеводы на поверхности мембран у разных клеток неодинаковы и являются своеобразными указателями типа клеток. Благодаря этому клетки, принадлежащие к одному типу, удерживаются вместе, образуя ткани. Кроме того, белковые молекулы обеспечивают избирательный транспорт сахаров, аминокислот, нуклеотидов и других веществ в клетку и из клетки. Таким образом, клеточная мембрана выполняет функции избирательно проницаемого барьера, регулирующего обмен между клеткой и средой.

Ядро - самый крупный органоид клетки, заключенный в оболочку из двух мембран, насквозь пронизанных многочисленными порами. Через них осуществляется активный обмен веществами между ядром и цитоплазмой. Полость ядра заполнена ядерным соком.

В нем находятся ядрышко (одно или несколько), хромосомы, ДНК, РНК, белки, углеводы, липиды. Ядрышко формируется определенными участками хромосом; в нем образуются рибосомы. Хромосомы видны только в делящихся клетках. В интерфазном (неделящемся) ядре они присутствуют в виде тонких длинных нитей хроматина (соединения ДНК с белком). Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.



Эндоплазматическая сеть (ЭПС) - это состоящая из мембран сложная система каналов и полостей, пронизывающая всю цитоплазму и образующая единое целое с наружной клеточной мембраной и ядерной оболочкой. ЭПС бывает двух типов - гранулированная (шероховатая) и гладкая. На мембранах гранулированной сети располагается множество рибосом, на мембранах гладкой сети их нет. Основная функция ЭПС - участие синтезе, накоплении и транспортировке основных органических веществ, вырабатываемых клеткой. Белок синтезируется гранулированной, а углеводы и жиры - гладкой ЭПС.

Рибосомы - очень мелкие органоиды, состоящие из двух субчастиц. В их состав входят белки и РНК. Основная функция рибосом - синтез белка.

Митохондрии снаружи ограничены внешней мембраной, имеющей в основном то же строение, что и плазматическая мембрана. Под наружной мембраной располагается внутренняя мембрана, образующая многочисленные складки - кристы. На кристах находятся дыхательные ферменты. Во внутренней полости митохондрий размещаются рибосомы, ДНК, РНК. Новые митохондрии образуются при делении старых. Основная функция митохондрий - синтез АТФ. В них синтезируется небольшое количество белков ДНК и РНК.

Хлоропласты - это органоиды, свойственные только клеткам растений. По своему строению они сходны с митохондриями. С поверхности каждый хлоропласт ограничен двумя мембранами - наружной и внутренней. Внутри хлоропласт заполнен студенистой стромой. В строме располагаются особые мембранные оболочка (две мембраны) - граны, связанные между собой и с внут-мемопаной хлоропласта. В мембранах гран на-орофилл. Благодаря хлорофиллу происходит превращение энергий солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза углеводов.

Аппарат Гольджи состоит из 3 - 8 сложенных стопкой, уплощенных и слегка изогнутых дискообразных полостей. Он выполняет в клетке разнообразные функции: участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом, в построении клеточной мембраны.

Лизосомы представляют собой простые сферические мембранные мешочки (мембрана одинарная), заполненные пищеварительными ферментами, расщепляющими углеводы, жиры, белки, нуклеиновые кислоты. Их основная функция - переваривание пищевых частиц и удаление отмерших органоидов.

Клеточный центр принимает участие в делении клетки и располагается около ядра. В состав клеточного центра клеток животных и низших растений входит центриоль. Центриоль - парное образование, она содержит две удлиненные гранулы, состоящие из микротрубочек и расположенные перпендикулярно друг другу центриоли

Органоиды движения - жгутики и реснички - представляют собой выросты клетки и имеют однотипное строение у животных и растений. Движение многоклеточных животных обеспечивается сокращениями мышц. Основной структурной единицей мышечной клетки являются миофибриоллы - тонкие нити, расположенные пучками вдоль мышечного волокна.

Крупная центральная вакуоль встречается в клетках растений и представляет собой мешок, образованный одинарной мембраной. (Более мелкие вакуоли, например, пищеварительные и сократительные, встречаются как в растительных, так и в животных клетках.) В вакуоли содержится клеточный сок - концентрированный раствор различных веществ (минеральных солей, Сахаров, кислот, пигментов, ферментов), которые здесь хранятся.

Клеточные включения - углеводы, жиры и белки - это непостоянные компоненты клетки. Они периодически синтезируются, накапливаются в цитоплазме в качестве запасных веществ и используются в процессе жизнедеятельности организма.

Клетка является наименьшей и основной структурной единицей живых организмов, способной к самообновлению, саморегуляции и самовоспроизведению.

Характерные размеры клеток: клетки бактерий — от 0,1 до 15 мкм, клетки других организмов — от 1 до 100 мкм, иногда достигают 1-10 мм; яйцеклетки крупных птиц — до 10-20 см, отростки нервных клеток — до 1 м.

Форма клеток весьма разнообразна: существуют шаровидные клетки (кокки) , цепочечные (стрептококки) , вытянутые (палочки, или бациллы) , изогнутые (вибрионы) , извитые (спириллы) , многогранные, с двигательными жгутиками и др.

Виды клеток: прокариотические (безъядерные) и эукариотические (имеющие оформленное ядро).

Эукариотические клетки, в свою очередь, подразделяются на клетки животных, растений и грибов.

Структурная организация эукариотической клетки

Протопласт — это все живое содержимое клетки. Протопласт всех эукариотических клеток состоит из цитоплазмы (со всеми органоидами) и ядра.

Цитоплазма — это внутреннее содержимое клетки за исключением ядра, состоящее из гиалоплазмы, погруженных в нее орга-иелл и (в некоторых типах клеток) внутриклеточных включений (запасных питательных веществ и/или конечных продуктов обмена).

Гиалоплазма — основная плазма, матрикс цитоплазмы, основное вещество, являющееся внутренней средой клетки и представляющее собой вязкий бесцветный коллоидный раствор (содержание воды до 85%) различных веществ: белков (10%), сахаров, органических и неорганических кислот, аминокислот, полисахаридов, РНК, липидов, минеральных солей и т.п.

■ Гиалоплазма является средой для внутриклеточных реакций обмена и связующим звеном между органеллами клетки; она способна к обратимым переходам из золя в гель, ее состав определяет буферные и осмотические свойства клетки. В цитоплазме находится цитоскелет, состоящий из микротрубочек и способных сокращаться белковых нитей.

■ Цитоскелет определяет форму клетки и участвует во внутриклеточном перемещении органоидов и отдельных веществ. Ядро — самый крупный органоид эукариотической клетки, содержащий хромосомы, в которых хранится вся наследственная информация (подробнее см. ниже).

Структурные компоненты эукариотической клетки:

■ плазмалемма (плазматическая мембрана),
■ клеточная стенка (только у клеток растений и грибов),
■ биологические (элементарные) мембраны,
■ ядро,
■ эндоплазматическая сеть (эндоплазматический ретикулум),
■ митохондрии,
■ комплекс Гольджи,
■ хлоропласты (только у клеток растений),
■ лизосомы, s
■ рибосомы,
■ клеточный центр,
■ вакуоли (только у клеток растений и грибов),
■ микротрубочки,
■ реснички, жгутики.

Схемы строения животной и растительной клеток приведены ниже:

Биологические (элементарные) мембраны — это активные молекулярные комплексы, разделяющие внутриклеточные органоиды и клетки. Все мембраны имеют сходное строение.

Структура и состав мембран: толщина 6-10 нм; состоят в основном из молекул белков и фосфолипидов.

Фосфолипиды образуют двойной (бимолекулярный) слой, в котором их молекулы обращены своими гидрофильными (водорастворимыми) концами наружу, а гидрофобными (водонерастворимыми) концами — внутрь мембраны.

Белковые молекулы располагаются на обеих поверхностях двойного липидного слоя (периферические белки ), пронизывают оба слоя молекул липидов (интегральные белки, большая часть которых — ферменты) или только один их слой (полуинтегральные белки).

Свойства мембран: пластичность, асимметрия (состав наружного и внутреннего слоев и липидов, и белков различен), полярность (внешний слой заряжен положительно, внутренний — отрицательно), способность самозамыкаться, избирательная проницаемость (при этом гидрофобные вещества проходят через двойной липидный слой, а гидрофильные — через поры в интегральных белках).

Функции мембран: барьерная (отделяет содержимое органоида или клетки от окружающей среды), структурная (обеспсчнило определенную форму, размеры и устойчивость органоида или клетки), транспортная (обеспечивает транспорт веществ в органоид или клетку и из нее), каталитическая (обеспечивает примембранные биохимические процессы), регулятивная (участвует в регуляции обмена веществ и энергии между органоидом или клеткой и внешней средой), участвует в преобразовании энергии и поддержании трансмембранного электрического потенциала.

Плазматическая мембрана (плазмалемма)

Плазматическая мембрана , или плазмалемма, — это биологическая мембрана или комплекс плотно прилегающих друг к другу биологических мембран, покрывающих клетку с внешней стороны.

Строение, свойства и функции плазмалеммы в основном такие же, как и у элементарных биологических мембран.

❖ Особенности строения:

■ наружная поверхность плазмалеммы содержит гликокаликс — полисахаридный слой молекул гликолипоидов и гликопротеидов, служащих рецепторами для «узнавания» определенных химических веществ; у животных клеток она может быть покрыта слизью или хитином, а у растительных клеток — целлюлозой или пектиновыми веществами;

■ обычно плазмалемма образует выросты, впячивания, складки, микроворсинки и др., увеличивающие поверхность клетки.

Дополнительные функции: рецепторная (участвует в «узнавании» веществ и в восприятии сигналов из окружающей среды и передаче их в клетку), обеспечение связи между клетками в тканях многоклеточного организма, участие в построении специальных структур клетки (жгутиков, ресничек и др.).

Клеточная стенка (оболочка)

Клеточная стенка — это жесткая структура, расположенная снаружи плазмалеммы и представляющая собой внешний покров клетки. Присутствует у прокариотических клеток и клеток грибов и растений.

Состав клеточной стенки: целлюлоза у клеток растений и хитин у клеток грибов (структурные компоненты), белки, пектины (которые участвуют в образовании пластинок, скрепляющих стенки двух соседних клеток), лигнин (скрепляющий целлюлозные волокна в очень прочный каркас), суберин (откладывается на оболочку изнутри и делает ее практически непроницаемой для воды и растворов) и др. Наружная поверхность клеточной стенки эпидермальных клеток растений содержит большое количество карбоната кальция и кремнезема (минерализация) и покрыта гидрофобными веществами восками и кутикулой (слоем вещества кутина, пронизанным целлюлозой и пектинами).

Функции клеточной стенки: служит внешним каркасом, поддерживает тургор клеток, выполняет защитную и транспортную функции.

Органеллы клетки

Органеллы (или органоиды) — это постоянные высокоспециализированные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции.

По назначению органеллы подразделяются на:
■ органеллы общего назначения (митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, центриоли, лизосомы, пластиды) и
■ органеллы специального назначения (миофибриллы, жгутики, реснички, вакуоли).
По наличию мембраны органеллы подразделяются на:
■ двумембранные (митохондрии, пластиды, клеточное ядро),
■ одномембранные (эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли) и
■ немембранные (рибосомы, клеточный центр).
Внутреннее содержимое мембранных органелл всегда отличается р.т окружающей их гиалоплазмы.

Митохондрии — двумембранные органеллы эукариотических клеток, осуществляющие окисление органических веществ до конечных продуктов с освобождением энергии, запасаемой в молекулах АТФ.

Строение: палочковидная, шаровидная и нитевидная формы, толщина 0,5-1 мкм, длина 2-7 мкм; двумембранные, наружная мембрана гладкая и имеет высокую проницаемость, внутренняя мембрана образует складки — кристы, на которых находятся тельца сферической формы — АТФ-сомы. В пространстве между мембранами скапливаются ионы водорода 11 , участвующие в кислородном дыхании.

Внутреннее содержимое (матрикс): рибосомы, кольцевые ДНК, РНК, аминокислоты, белки, ферменты цикла Кребса, ферменты тканевого дыхания (находятся на кристах).

Функции: окисление веществ до СO 2 и Н 2 O; синтез АТФ и специфических белков; образование новых митохондрий в результате деления надвое.

Пластиды (имеются только у клеток растений и автотрофных протистов).

Виды пластид: хлоропласты (зеленые), лейкопласты (бесцветные округлой формы), хромопласты (желтые или оранжевые); пластиды могут превращаться из одного вида в другой.

Строение хлоропластов: они двумембранные, имеют округлую или овальную форму, длина 4-12 мкм, толщина 1-4 мкм. Наружная мембрана гладкая, на внутренней имеются тилакоиды — складки, образующие замкнутые дисковидные впячивания, между которыми находится строма (см. ниже). У высших растений тилакоиды собраны в стопки (наподобие столбика монет) граны , которые соединены друг с другом ламеллами (одиночными мембранами).

Состав хлоропластов: в мембранах тилакоидов и гран — зерна хлорофилла и других пигментов; внутреннее содержимое (строма): белки, липиды, рибосомы, кольцевые ДНК, РНК, ферменты, участвующие в фиксации СO 2 , запасные вещества.

Функции пластид: фотосинтез (хлоропласты, содержащиеся в зеленых органах растений), синтез специфических белков и накопление запасных питательных веществ: крахмала, белков, жиров (лейкопласты), придание окраски тканям растений с целью привлечения насекомых-опылителей и распространителей плодов и семян (хромопласты).

Эндоплазматическая сеть (ЭПС ), или эндоплазматический ретикулум, имеется во всех эукариотических клетках.

Строение: представляет собой систему соединенных между собой канальцев, трубочек, цистерн и полостей различной формы и размеров, стенки которых образованы элементарными (одинарными) биологическими мембранами. Различают два типа ЭПС: гранулярную (или шероховатую), содержащую рибосомы на поверхности каналов и полостей, и агранулярную (или гладкую), не содержащую рибосом.

Функции: разделение цитоплазмы клетки на отсеки, препятствующие смешению происходящих в них химических процессов; шероховатая ЭПС накапливает, изолирует для созревания и транспортирует,белки, синтезированные рибосомами на ее поверхности, синтезирует мембраны клетки; гладкая ЭПС синтезирует и транспортирует липиды, сложные углеводы и стероидные гормоны, выводит из клетки ядовитые вещества.

Комплекс (или аппарат) Гольджи — мембранная органелла эукариотической клетки, расположенная вблизи клеточного ядра, представляющая собой систему цистерн и пузырьков и участвующая в накоплении, хранении и транспортировке веществ, построении клеточной оболочки и образовании лизосом.

Строение: комплекс представляет собой диктиосому — стопку ограниченных мембраной плоских дисковидных мешочков {цистерн), от которых отпочковываются пузырьки, и систему мембранных трубочек, связывающих комплекс с каналами и полостями гладкой ЭПС.

Функции: образование лизосом, вакуолей, плазмалеммы и клеточной стенки растительной клетки (после ее деления), секреция ряда комплексных органических веществ (пектиновых веществ, целлюлозы и др. у растений; гликопротеинов, гликолипидов, коллагена, белков молока, желчи, ряда гормонов и др. у животных); накопление и обезвоживание транспортированных по ЭПС липидов (из гладкой ЭПС), доработка и накопление белков (из гранулярной ЭПС и свободных рибосом цитоплазмы) и углеводов, выведение веществ из клетки.

Зрелые цистерны диктиосомы отшнуровывают пузырьки (вакуоли Гольджи) , заполненные секретом, который затем либо используется самой клеткой, либо выводится за ее пределы.

Лизосомы — клеточные органеллы, обеспечивающие расщепление сложных молекул органических веществ; образуются из пузырьков, отделяющихся от комплекса Гольджи или гладкой ЭПС, и присутствуют во всех эукариотических клетках.

Строение и состав: лизосомы — это небольшие одномембранные пузырьки округлой формы диаметром 0,2-2 мкм; заполнены гидролитическими (пищеварительными) ферментами (~40), способными расщеплять белки (до аминокислот), липиды (до глицерина и высших карбоновых кислот), полисахариды (до моносахаридов) и нуклеиновые кислоты (до нуклеотидов).

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (или вторичную лизосому), где и происходит расщепление сложных органических веществ; полученные мономеры через мембрану вторичной лизосомы поступают в цитоплазму клетки, а непереваренные (негидролизуемые) вещества остаются во вторичной лизосоме и затем, как правило, выводятся за пределы клетки.

Функции: гетерофагия — расщепление чужеродных веществ, поступивших в клетку путем эндоцитоза, аутофагия — уничтожение ненужных клетке структур; автолиз — саморазрушение клетки, происходящее в результате освобождения содержимого лизосом при гибели или перерождении клетки.

❖ Вакуоли — крупные пузырьки или полости в цитоплазме, образующиеся в клетках растений, грибов и многих протистов и ограниченные элементарной мембраной -тонопластом.

■ Вакуоли протистов подразделяют на пищеварительные и сократительные (имеющие в мембранах пучки эластичных волокон и служащие для осмотической регуляции водного баланса клетки).

■Вакуоли растительных клеток заполнены клеточным соком — водным раствором различных органических и неорганических веществ. В них также могут находиться ядовитые и дубильные вещества и конечные продукты жизнедеятельности клеток.

■Вакуоли растительных клеток могут сливаться в центральную вакуоль, которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

Функции: накопление и изоляция запасных веществ и веществ, предназначенных для экскреции; поддержание тургор-ного давления; обеспечение роста клетки за счет растяжения; регуляция водного баланса клетки.

♦Рибосомы — органеллы клетки, присутствующие во всех клетках (в количестве нескольких десятков тысяч), расположенные на мембранах гранулярной ЭПС, в митохондриях, хлоропластах, цитоплазме и наружной ядерной мембране и осуществляющие биосинтез белков; субъединицы рибосом образуются в ядрышках.

Строение и состав: рибосомы -мельчайшие (15-35 нм) немембранные гранулы округлой и грибовидной формы; имеют два активных центра (аминоацильный и пептидильный); состоят из двух неравных субъединиц - большой (в виде полусферы с тремя выступами и каналом), которая содержит три молекулы РНК и белок, и малой (содержащей одну молекулу РНК и белок); субъединицы соединяются с помощью иона Mg+.

■ Функция: синтез белков из аминокислот.

Клеточный центр — органелла большинства клеток животных, некоторых грибов, водорослей, мхов и папоротников, расположенная (в интерфазе) в центре клетки вблизи ядра и служащая центром инициации сборки микротрубочек .

Строение: клеточный центр состоит из двух центриолей и центросферы. Каждая центриоль (рис. 1.12) имеет вид цилиндра длиной 0,3-0,5 мкм и диаметром 0,15 мкм, стенки которого образованы девятью триплетами микротрубочек, а середина заполнена однородным веществом. Центриоли расположены перпендикулярно друг другу и окружены плотным слоем цитоплазмы с радиально расходящимися микротрубочками, образующими лучистую центросферу. При делении клетки центриоли расходятся к полюсам.

■ Основные функции: образование полюсов деления клеток и ахроматиновых нитей веретена деления (или митотического веретена), обеспечивающего равноценное распределение генетического материала между дочерними клетками; в интерфазе направляет передвижение органелл в цитоплазме.

Цитоскслст клетки — это система микрофиламентов и микротрубочек , пронизывающих цитоплазму клетки, связанных с наружной цитоплазматической мембраной и ядерной оболочкой и поддерживающих форму клетки.

Микрофнламенты — тонкие, способные сокращаться нити толщиной 5-10 нм и состоящие из белков (актина, миозина и др.). Находятся в цитоплазме всех клеток и ложноножках подвижных клеток.

Функции: микрофнламенты обеспечивают двигательную активность гиалоплазмы, непосредственно участвуют в изменении формы клетки при распластывании и амебоидном движении клеток протистов, участвуют в образовании перетяжки при делении клеток животных; одни из основных элементов цитоскелета клетки.

Микротрубочки — тонкие полые цилиндры (диаметром 25 нм), состоящие из молекул белка тубулина, расположенные спиральными или прямолинейными рядами в цитоплазме эукариотических клеток.

Функции: микротрубочки образуют нити веретена деления, входят в состав центриолей, ресничек, жгутиков, участвуют во внутриклеточном транспорте; одни из основных элементов цитоскелета клетки.

Органеллы движения жгутики и реснички , присутствуют во многих клетках, но чаще встречаются у одноклеточных организмов.

Реснички — многочисленные цитоплазматические короткие (длиной 5-20 мкм) выросты на поверхности плазмалеммы. Имеются на поверхности различных видов клеток животных и некоторых растений.

Жгутики — единичные цитоплазматические выросты на поверхности клеток многих протистов, зооспор и сперматозоидов; в ~10 раз длиннее ресничек; служат для передвижения.

Строение: реснички и жгутики (рис. 1.14) состоят их микротрубочек , расположенных по системе 9×2+2 (девять двойных микротрубочек — дублетов образуют стенку, в середине расположены две одиночные микротрубочки). Дублеты способны скользить друг относительно друга, что приводит к изгибанию реснички или жгутика. В основании жгутиков и ресничек имеются базальные тельца, идентичные, по структуре центриолям.

■ Функции: реснички и жгутики обеспечивают передвижение самих клеток или окружающей их жидкости и взвешенных в ней частиц.

Включения

Включения — непостоянные (существующие временно) компоненты цитоплазмы клетки, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические, секреторные и экскреторные включения.

Трофические включения — это запасы питательных веществ (жир, крахмальные и белковые зерна, гликоген).

Секреторные включения — это продукты жизнедеятельности желез внутренней и внешней секреции (гормоны, ферменты).

Экскреторные включения — это продукты обмена веществ в клетке, подлежащие выведению из клетки.

Ядро и хромосомы

Ядро — самый крупная органелла; является обязательным компонентов всех эукариотических клеток (за исключением клеток ситовидных трубок флоэмы высших растений и зрелых эритроцитов млекопитающих). В большинстве клеток присутствует одно ядро, но существуют двух- и многоядерные клетки. Выделяют два состояния ядра: интерфазное и делящееся

Интерфазное ядро состоит из ядерной оболочки (отделяющей внутреннее содержимое ядра от цитоплазмы), ядерного матрикса (кариоплазмы), хроматина и ядрышек. Форма и размеры ядра зависят от вида организма, типа, возраста и функционального состояния клетки. Отличается высоким содержанием ДНК (15-30%) и РНК (12%).

Функции ядра: хранение и передача наследственной информации в виде неизменной структуры ДНК; регуляция (через систему белкового синтеза) всех процессов жизнедеятельности клетки.

Ядерная оболочка (или кариолемма) состоит из наружной и внутренней биологических мембран, между которыми находится перинуклеарное пространство . На внутренней мембране имеется белковая пластинка, придающая форму ядру. Наружная мембрана соединена с ЭПС и несет на себе рибосомы. Оболочка пронизана ядерными порами, через которые происходит обмен веществ между ядром и цитоплазмой. Число пор непостоянно и зависит от размеров ядра и его функциональной активности.

Функции ядерной оболочки: она отделяет ядро от цитоплазмы клетки, регулирует транспорт веществ из ядра в цитоплазму (РНК, субъединиц рибосом) и из цитоплазмы в ядро (белков, жиров, углеводов, АТФ, воды, ионов).

Хромосома — важнейшая органелла ядра, содержащая одну молекулу ДНК в комплексе со специфическими белками гистонами и некоторыми другими веществами, большая часть которых находится на поверхности хромосомы.

В зависимости от фазы жизненного цикла клетки хромосомы могут быть в двух состояниях деспирализованном и спирализованном.

» В деспирализованном состоянии хромосомы находятся в период интерфазы клеточного цикла, образуя невидимые в оптический микроскоп нити, составляющие основу хроматина .

■ Спирализация, сопровожающаяся укорачиванием и уплотнением (в 100-500 раз) нитей ДНК, происходят в процессе деления клетки ; при этом хромосомы приобретают компактную форму и становятся видимыми в оптический микроскоп.

Хроматин - один из компонентов ядерного вещества в период интерфазы, основу которого составляют деспирализованные хромосомы в виде сети длинных тонких нитей молекул ДНК в комплексе с гистонами и другими веществами (РНК, ДНК полимеразой, липидами, минеральными веществами и др.); хорошо окрашивается красителями, применяемыми в гистологической практике.

■ В хроматине участки молекулы ДНК навиваются на гистоны, образуя нуклеосомы (по виду напоминают бусы).

Хроматида — это структурный элемент хромосомы, представляющий собой нить молекулы ДНК в комплексе с белками гистонами и другими веществами, многократно сложенную как суперспираль и упакованную в виде палочковидного тельца.

■ При спирализации и упаковке отдельные участки ДНК укладываются закономерным образом так, что на хроматидах образуются чередующиеся поперечные полосы.

❖ Строение хромосомы (рис. 1.16). В спирализованном состоянии хромосома представляет собой палочковидную структуру размерами около 0,2-20 мкм, состоящую из двух хроматид и разделенную на два плеча первичной перетяжкой, называемой центромерой. Хромосомы могут иметь вторичную перетяжку, отделяющую участок, называемый спутником. У некоторых хромосом имеется участок (ядрышковый организатор ), на котором закодирована структура рибосомных РНК (р-РНК).

Типы хромосом в зависимости от их формы: равноплечие , неравноплечие (центромера смещена от середины хромосомы), палочковидные (центромера находится близко к концу хромосомы).

После анафазы митоза и анафазы мейоза II хромосомы состоят из одной хромитиды, а после репликации (удвоения) ДНК на синтетической (S) стадии интерфазы — из двух сестринских хромитид, соединенных друг с другом в области центромеры. Во время деления клетки к центромере прикрепляются микротрубочки веретена деления.

❖ Функции хромосом:
■ содержат генетический материал — молекулы ДНК;
■ осуществляют синтез ДНК (при удвоении хромосом в S-иериод клеточного цикла) и и-РНК;
■ регулируют синтез белков;
■ контролируют жизнедеятельность клетки.

Гомологичные хромосомы — хромосомы, относящиеся к одной паре, одинаковые по форме, размерам, расположению центромер, несущие одинаковые гены и определяющие развитие одних и тех же признаков. Гомологичные хромосомы могут различаться аллелями содержащихся в них генов и обмениваться участками в ходе мейоза (кроссинговер).

Аутосомы хромосомы в клетках раздельнополых организмов, одинаковые у самцов и самок одного вида (это все хромосомы клетки за исключением половых).

Половые хромосомы (или гетерохромосомы ) — это хромосомы, несущие гены, определяющие пол живого организма.

Диплоидный набор (обозначается 2п) — хромосомный набор соматической клетки, в котором каждая хромосома имеет парную ей гомологичную хромосому . Одну из хромосом диплоидного набора организм получает от отца, другую — от матери.

■ Диплоидный набор человека составляет 46 хромосом (из них 22 пары гомологичных хромосом и две половые хромосомы: у женщин две Х- хромосомы, у мужчин — по одной X- и Y- хромосоме).

Гаплоидный набор (обозначается 1л) — одинарный хромосомный набор половой клетки (гаметы ), в котором хромосомы не имеют парных гомологичных хромосом . Гаплоидный набор образуется при формировании гамет в результате мейоза, когда из каждой нары гомологичных хромосом в гамету попадает только одна.

Кариотип — это совокупность постоянных количественных и качественных морфологических признаков, характерных для хромосом соматических клеток организмов данного вида (их количество, размер и форма), по которым можно однозначно идентифицировать диплоидный набор хромосом.

Ядрышко — округлое, сильно уплотненное, не ограниченное

мембраной тельце размером 1-2 мкм. В ядре имеется одно или несколько ядрышек. Ядрышко образуется вокруг притягивающихся друг к другу ядрышковых организаторов нескольких хромосом. Во время деления ядра ядрышки разрушаются и вновь формируются в конце деления.

■ Состав: белок 70-80%, РНК 10-15%, ДНК 2-10%.
■ Функции: синтез р-РНК и т-РНК; сборка субъединиц рибосом.

Кариоплазма (или нуклеоплазма, кариолимфа, ядерный сок ) — это бесструктурная масса, заполняющая пространство между структурами ядра, в которую погружены хроматин, ядрышки, а также различные внутриядерные гранулы. Содержит воду, нуклеотиды, аминокислоты, АТФ, РНК и белки-ферменты.

Функции: обеспечивает взаимосвязи ядерных структур; участвует в транспорте веществ из ядра в цитоплазму и из цитоплазмы в ядро; регулирует синтез ДНК при репликации, синтез и-РНК при транскрипции.

Сравнительная характеристика клеток эукариот

Особенности строения прокариотической и эукариотической клеток

Транспорт веществ

Транспорт веществ — это процесс переноса необходимых веществ по организму, к клеткам, внутрь клетки и внутри клетки, а также удаление отработанных веществ из клетки и организма.

Внутриклеточный транспорт веществ обеспечивает гиалоплазма и (у клеток эукариот) эндоплазматическая сеть (ЭПС), комплекс Гольджи и микротрубочки. Транспорт веществ будет описан позже на этом сайте.

Способы транспорта веществ через биологические мембраны:

■ пассивный транспорт (осмос, диффузия, пассивная диффузия),
■ активный транспорт,
■ эндоцитоз,
■ экзоцитоз.

Пассивный транспорт не требует затрат энергии и происходит по градиенту концентрации, плотности или электрохимического потенциала.

Осмос — это проникновение воды (или иного растворителя) через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный.

Диффузия — проникновение вещества через мембрану по градиенту концентрации (из области с большей концентрацией вещества в область с меньшей концентрацией).

Диффузия воды и ионов осуществляется при участии интегральных белков мембраны, имеющих поры (каналы), диффузия жирорастворимых веществ происходит при участии липидной фазы мембраны.

Облегченная диффузия через мембрану происходит с помощью специальных мембранных белков-переносчиков, смотрите на картинке.

Активный транспорт требует затрат энергии, выделяющейся при расщеплении АТФ, и служит для переноса веществ (ионов, моносахаров, аминокислот, нуклеотидов) против градиента их концентрации или электрохимического потенциала. Осуществляется специальными белками-переносчиками пермиазами , имеющими ионные каналы и образующими ионные насосы .

Эндоцитоз — захват и обволакивание клеточной мембраной макромолекул (белков, нуклеиновых кислот и т.д.) и микроскопических твердых пищевых частиц (фагоцитоз ) или капелек жидкости с растворенными в ней веществами (пиноцитоз ) и заключение их в мембранную вакуоль, которая втягивается «внутрь клетки. Вакуоль затем сливается с лизосомой, ферменты которой расщепляют молекулы захваченного вещества до мономеров.

Экзоцитоз — процесс, обратный эндоцитозу. Посредством экзоцитоза клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки.



Похожие статьи

  • Этногенез и этническая история русских

    Русский этнос - крупнейший по численности народ в Российской Федерации. Русские живут также в ближнем зарубежье, США, Канаде, Австралии и ряде европейских стран. Относятся к большой европейской расе. Современная территория расселения...

  • Людмила Петрушевская - Странствия по поводу смерти (сборник)

    В этой книге собраны истории, так или иначе связанные с нарушениями закона: иногда человек может просто ошибиться, а иногда – посчитать закон несправедливым. Заглавная повесть сборника «Странствия по поводу смерти» – детектив с элементами...

  • Пирожные Milky Way Ингредиенты для десерта

    Милки Вэй – очень вкусный и нежный батончик с нугой, карамелью и шоколадом. Название конфеты весьма оригинальное, в переводе означает «Млечный путь». Попробовав его однажды, навсегда влюбляешься в воздушный батончик, который принес...

  • Как оплатить коммунальные услуги через интернет без комиссии

    Оплатить услуги жилищно-коммунального хозяйства без комиссий удастся несколькими способами. Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как...

  • Когда я на почте служил ямщиком Когда я на почте служил ямщиком

    Когда я на почте служил ямщиком, Был молод, имел я силенку, И крепко же, братцы, в селенье одном Любил я в ту пору девчонку. Сначала не чуял я в девке беду, Потом задурил не на шутку: Куда ни поеду, куда ни пойду, Все к милой сверну на...

  • Скатов А. Кольцов. «Лес. VIVOS VOCO: Н.Н. Скатов, "Драма одного издания" Начало всех начал

    Некрасов. Скатов Н.Н. М.: Молодая гвардия , 1994. - 412 с. (Серия "Жизнь замечательных людей") Николай Алексеевич Некрасов 10.12.1821 - 08.01.1878 Книга известного литературоведа Николая Скатова посвящена биографии Н.А.Некрасова,...